

Manual do usuário DTN-485

ENABLING TECHNOLOGY

Khomp - Todos os direitos reservados

Índice

1. Introdução	página 3
1.1. Visão geral sobre o DTN-485	Página 3
1.2. Recursos	Página 3
1.3. Especificações	Página 4
1.4. Modo de suspensão e modo de trabalho	Página 4
1.5. LEDs e botões	Página 5
1.6. Conexões Internas	Página 6
1.7. Dimensões	Página 7
1.8. Inserindo o SIM card no DTN-485	Página 8
1.8.1. Chaves de segurança	Página 10
2. Como funciona o DTN-485	Página 12
2.1. Conexão física com os sensores	Página 12
2.2. Comunicação de dados com os sensores	Página 13
3. Configuração do DTN-485	Página 14
3.1. Configuração geral do DTN-485 via app Konfig	Página 14
3.2. Configurações Específicas para o DTN-485 via app Konfig	Página 15
4. Comandos AT específicos para o DTN-485	Página 16
4.1. Comando de debug (AT+CFGDEV)	Página 16
4.2. Comando de ação (AT+COMMANDX)	Página 17
4.3. Comando de retorno (AT+DATACUTX)	página 18
4.4. Tipos de payload (AT+PRO)	página 19
4.4.1 Formato JSON	página 20
4.4.2 Formato HEXADECIMA	página 21
4.5. Alterar o intervalo de uplink (AT+TDC)	página 22
4.6. Excluir as regras flexíveis (AT+CMDEAR)	página 22
5. Obter acesso à documentação adicional	página 23

1. Introdução

1.1. Visão geral sobre o DTN-485

O DTN-485 é um dispositivo que utiliza o protocolo RS485 para a conexão física e o protocolo MODBUS-RTU para a comunicação de dados com os sensores conectados a ele. Foi criado especialmente para aplicações IoT, onde o usuário precise enviar dados de sensores RS485/MODBUS-RTU para à rede NB-IoT.

Dispõe de 15 regras flexíveis, onde são ajustadas para comunicação com os sensores conectados na sua interface RS485. Cada regra flexível equivale a um comando MODBUS-RTU que o DTN-485 enviará à um dos sensores. Atuará obrigatoriamente como o dispositivo MODBUS Master nos cenários de aplicação.

Suporta diferentes métodos de uplink, incluindo MQTT, MQTTs, UDP, TCP ou CoAP para diferentes requisitos de aplicação, e suporta uplinks para vários servidores IoT.

Conta com uma proteção IP65 (waterproof) e foi projetado para uso prolongado em situações adversas de clima.

Possui saídas ajustáveis de 3.3 V e 5 V para alimentar sensores externos, permitindo o controle dessas tensões para reduzir o consumo de energia do sistema.

É alimentado por uma bateria Li/SOC12 de 8500 mAh, assegurando vários anos de operação contínua, embora a duração da bateria seja dependente da quantidade de uplinks diários.

1.2. Recursos

- Bandas NB-IoT: B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B25/B28/B66/B70/B85 @H-FDD
- Conexão física através do protocolo RS485
- Comunicação de dados através do protocolo MODBUS-RTU
- Suporte à conexão direta com 1 único sensor RS485 ou à um barramento com até 30 sensores
- 15 Regras flexíveis para comunicação com diferentes sensores
- Uplink via MQTT, MQTTs, TCP ou UDP
- Configuração remota via BLE e comandos downlink
- Consumo ultra baixo de energia
- Saída controlável de tensão (3.3 V e 5 V)
- Grau de proteção IP65
- Bateria Li/SOCI2 de 8500 mAh.
- Slot para cartão Nano SIM para NB-IoT SIM

1.3. Especificações

Características comuns de DC

- Tensão de alimentação: 2,5 v até 3,6 v.
- Temperatura operacional: -40 °C até 85 °C.

Suporte para bandas NB-IoT

- B1 @H-FDD: 2100 MHz.
- B2 @H-FDD: 1900MHz
- B3 @H-FDD: 1800 MHz.
- B4 @H-FDD: 2100MHz
- B5 @H-FDD: 860MHz
- B8 @H-FDD: 900 MHz.
- B12 @H-FDD: 720MHz
- B13 @H-FDD: 740MHz
- B17 @H-FDD: 730MHz
- B18 @H-FDD: 870MHz
- B19 @H-FDD: 870MHz
- B20 @H-FDD: 800 MHz.
- B25 @H-FDD: 1900MHz
- B28 @H-FDD: 700 MHz.
- B66 @H-FDD: 2000MHz
- B70 @H-FDD: 2000MHz
- B85 @H-FDD: 700MHz

Bateria

- Bateria Li/SOCI2 não recarregável.
- Capacidade: 8500 mAh.
- Autodescarga: <1% / Ano a 25 °C.
- Corrente máxima contínua: 130 mA.
- Corrente máxima de reforço: 2 A, 1 segundo.

Consumo de energia

- Modo de suspensão: 10 μA @ 3,3 V.
- Modo de transmissão: 350 mA @ 3,3 V.

Grau de proteção

• IP65 (waterproof)

Garantias e certificações

- Garantia total (legal + garantia khomp): 1 ano
 - Garantia legal: 90 dias
 - Garantia Khomp: 9 meses
- Certificação Anatel
- Indústria certificada ISO 9001

1.4. Modo de suspensão e modo de trabalho

Modo de trabalho (Working Mode): Neste modo, o equipamento possui o funcionamento normal de um dispositivo NB-IoT. Ele irá ingressar na rede NB-IoT e enviará dados ao gateway. Periodicamente, entre cada amostragem, o dispositivo entrará no modo IDLE. No modo IDLE, ele terá o mesmo consumo de energia que no modo de suspensão.

Modo de suspensão (Deep Sleep Mode): Quando o equipamento não possui conexão NB-IoT, ele entra no modo suspensão. Este modo é utilizado para economizar bateria e otimizar a vida útil do equipamento.

Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	Apenas se o sensor estiver conectado à rede NB-IoT, o sensor enviará um pacote de uplink e o LED irá piscar azul uma vez (esta ação leva alguns segundos para acontecer). Enquanto isso, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o dispositivo.
Pressionar o botão ACT por mais de 3 segundos	Reiniciar Dispositivo	O LED pisca verde rapidamente 5 vezes, o dispositivo entrará no modo OTA por 3 segundos. Em seguida, ENTRA na rede NB-IoT. O LED acende verde continuamente por 5 segundos após entrar na rede. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o equipamento, independentemente de o dispositivo ingressar ou não na rede NB-IoT.
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED ficará aceso na cor vermelho por 5 segundos. Significa que o DTN-485 está no modo de suspensão de energia.

1.6. Conexões Internas

Barramento	Funções
+3.3V	Saída controlável de 3.3V DC, (nível de tensão igual ao da bateria, 2.6–3.6 V). Uso: Utilizado para alimentar sensores que requerem uma tensão de 3,3V
+5V	Saída controlável de 5V DC. Uso: Utilizado para alimentar sensores que requerem uma tensão de 5V
RS485 A RS485 B	Linhas de transmissão e recepção para o protocolo RS-485. Uso: Utilizado para conexão do dispositivo com o barramento RS485 ou diretamente ao sensor RS485
GND	GND (terra) - ponto de referência comum. Uso: Serve como ponto de referência para as tensões e caminho de retorno para a corrente elétrica.

Outras Conexões	Funções
Reset	Botão de reset. Uso: Utilizado para resetar as configurações de fábrica no dispositivo.
Power Jumper	Pinos de alimentação. Uso: Utilizado para fechar o contato nos pinos de alimentação do dispositivo
LED	LED indicador. Uso: Utilizado para verificar o status de operação do dispositivo

1.7. Dimensões

Legenda: Dimensões na parte frontal do DTN-485.

Legenda: Dimensões na parte lateral do DTN-485.

Legenda: Dimensões na parte traseira do DTN-485.

1.8. Inserindo o SIM card no DTN-485

No DTN-485, o SIM card é inserido na parte debaixo do módulo NB. Para acessar o local correto, é preciso remover o módulo da placa principal do dispositivo.

Um exemplo de como instalar o SIM card no dispositivo é observado a seguir:

1. Remova os 4 parafusos na parte frontal do DTN-485.

2. Remover o pino que ativa a alimentação da bateria e também o parafuso que fixa o módulo na placa principal;

- **3**. Insira o SIM card no slot da placa, conforme mostra a imagem a seguir.
 - (j)

Nota Ao inserir o SIM card corretamente, é possível escutar um "click".

4. Após aplicar todas as etapas, posicione o módulo no local de origem e fixe os parafusos novamente.

1.8.1. Chaves de segurança

Como mencionado anteriormente, o dispositivo possui um conjunto único de chaves para registro no servidor. Para ingressar o dispositivo na rede mobile, é necessário inserir as chaves no servidor e, após isso, ligar o dispositivo para que ele inicie o processo de JOIN (adesão à rede) automaticamente.

As chaves de segurança estão localizadas em uma etiqueta dentro da caixa do produto. Além das chaves, a etiqueta também contém outras chaves privadas do dispositivo, utilizadas para diferentes processos.

- Guarde bem as chaves de cada equipamento.
- Somente as chaves podem adicionar o endpoint na rede mobile.
- As chaves também são necessárias para alterar as configurações do dispositivo.

Abra a caixa e observa a etiqueta no lado interno da tampa (na embalagem). Um exemplo de onde localizar a etiqueta com as chaves do DTN-485 é observado a seguir:

A seguir, um exemplo de onde está localizada as chaves de segurança, IMSI e Serial Number (SN):

2. Como funciona o DTN-485

O DTN-485 funciona como um conversor, projetado para integrar sensores RS485 / MODBUS_RTU com redes NB IoT.

O sistema utiliza 2 protocolos para a integração com os sensores, um protocolo para a conexão física e o outro para a troca de dados.

2.1. Conexão física com os sensores

O DTN-485 dispõe de uma interface RS485, utilizada como meio físico para a conexão serial entre o equipamento e os sensores.

O protocolo RS485 é um padrão que define a maneira como os sinais são transmitidos em um barramento de comunicação, permitindo a conexão de múltiplos dispositivos em um único par de cabos diferencial.

A seguir, é indicada uma imagem onde mostra o DTN-485 conectado pela interface RS485. Os pinos 3 e 4 do borne interno, são disponibilizados para isso.

(i) Nota

A idéia da imagem foi exemplificar a conexão com a interface RS485. Utilize o "passa cabos" antes de conectar os fios aos bornes da interface RS485 em um cenário real.

2.2. Comunicação de dados com os sensores

Para a comunicação de dados entre o DTN-485 e os sensores, será utilizado o protocolo MODBUS-RTU. O MODBUS-RTU (Remote Terminal Unit) é um protocolo de comunicação serial amplamente utilizado para troca de dados em sistemas de automação industrial.

Ele opera em uma configuração mestre-escravo, isso significa que um dispositivo mestre controla a comunicação e envia comandos para um ou mais dispositivos escravos. No contexto do DTN-485, o dispositivo opera como o mestre. Isso implica que o DTN-485 é responsável por iniciar e controlar a comunicação com os sensores (escravos).

O processo de comunicação é descrito a seguir:

1. Envio de Solicitação: O DTN-485, atuando como mestre, envia uma solicitação MODBUS-RTU para um sensor. Essa solicitação inclui o endereço do dispositivo escravo, o código da função desejada (por exemplo, leitura de registradores), o endereço dos registradores a serem consultados e quaisquer parâmetros adicionais necessários (por exemplo, o CRC).

2. Recebimento de Resposta: O sensor escravo responde com os dados solicitados ou com uma mensagem de erro, dependendo do processamento da solicitação. A resposta inclui as informações requisitadas ou um código de erro indicando problemas na solicitação.

3. Processamento dos Dados: Após receber a resposta dos sensores, o DTN-485 processa as informações coletadas. Este processamento pode envolver a formatação ou agregação dos dados, conforme necessário para a transmissão.

Cada mensagem MODBUS-RTU é composta por:

- Endereço do Dispositivo: Identifica à qual dispositivo escravo a mensagem será entregue.
- Código da Função: Define a ação a ser executada, como leitura de dados ou escrita de dados.
- Dados: Endereço dos registradores que serão consultados no sensor.
- CRC (Cyclic Redundancy Check): Um código de verificação de erros que garante a integridade dos dados transmitidos.

Embora o MODBUS-RTU seja um protocolo de comunicação padronizado, a maneira como os dispositivos interpretam e utilizam esse protocolo pode variar bastante entre diferentes fabricantes e modelos, por exemplo:

- Cada sensor pode ter um mapeamento de registradores diferente, o que significa que os endereços dos registradores que armazenam os dados podem variar. Por exemplo, o registrador para leitura da temperatura em um sensor pode estar no endereço 0x1000, enquanto em outro sensor pode estar no endereço 0x2000.
- Embora os códigos de função MODBUS sejam padrão (como leitura e escrita de registradores), a forma como cada dispositivo utiliza esses códigos pode variar. Alguns dispositivos podem ter códigos de função específicos para operações particulares que não são padrão.
- Os formatos de dados (como o número de bytes utilizados para representar um valor ou o tipo de dados inteiro, flutuante, etc.) podem variar. Por exemplo, um sensor pode enviar valores como inteiros de 16 bits, enquanto outro pode enviar valores de ponto flutuante de 32 bits.
- Cada sensor precisa ter um endereço único na rede MODBUS-RTU. O endereço é atribuído geralmente por meio de configurações físicas ou via software.

Com isso, o comando MODBUS-RTU que o DTL-485 (dispositivo mestre) deverá enviar à cada sensor, deverá ser disponibilizado pelo fabricante do sensor

Caso não encontre como foi implementado o protocolo MODBUS-RTU nas documentações do sensor, recomenda-se entrar em contato com o fabricante e solicitar essa informação.

3. Configuração do DTN-485

O DTN-485 suporta a conexão via BLE (Bluetooth) com outros dispositivos. Com isso, a Khomp disponibiliza o aplicativo **KONFIG** para realizar a configuração dos parâmetros do endpoint. Os endpoints da linha DTN são configurados através de comandos AT. Portanto, aceitam

comandos do tipo:

AT + comando = valor_do_parâmetro

Para facilitar aos usuários que possuem endpoints da linha DTN, o aplicativo Konfig possui uma série de botões predefinidos onde visam economizar tempo na configuração e deixá-la mais dinâmica e simples. O aplicativo está disponível para as plataformas Android e iOS e pode ser baixado através dos links:

- Android: https://play.google.com/store/apps/details?id=com.khomp.konfig&pli=1
- iOS: https://apps.apple.com/us/app/konfig/id6739005051

2.1. Configuração geral do DTN-485 via app Konfig

Os endpoints da linha DTN possuem a mesma base de configuração inicial. Essas configurações podem facilmente serem feitas através do aplicativo Konfig, com os botões predefinidos.

Disponibilizamos um manual a parte para este tipo de configuração, onde será encontrado a maneira correta de usar os comandos e exemplos para auxiliar no processo. A documentação para a configuração geral pode ser obtida através do endereço observado a seguir:

https://docs.google.com/presentation/d/1WNFs9TNmAUDxLEtKSFsrdZ6zkKZD0yjAikiBBoTqcol/edit#slide=id.g2d6c81bd0a1_1_0

3.2. Configurações Específicas para o DTN-485 via app Konfig

Como informado anteriormente, a configuração dos parâmetros nos endpoints da linha DTN é feita através de comandos AT.

O aplicativo Konfig, possui um botão onde o usuário pode informar os comandos AT de configurações específicas e também os seus valores.

A imagem a seguir possui indicações para enviar comandos AT.

-	Con	figuraçã	o AT	-
Cor sele Sen	nplete o vali cionado. opre apaque	or dos com	andos do bo erior antes d	tão
inse	nir um coma	ando difere	nte.	
[364	18]Signal S 48]Signal S	trength:99 trength:99		
[396	78 Signal S	trength:99		
413	08]Signal S	trength:99		
[445	68]Signal S	trength:99		
[461	98]Signal S	trength:99		
[402	27JPasswo	ra Correct		
_				_
			8	2
Role	oara baixo*			
\square	Senha C	omandos a	vançados	
	Exib	ir configura	ções	
_			_	

Legenda:

- 1. Botão Senha | Comandos Avançados: Botão para habilitar o local de envio dos comandos específicos.
- 2. Campo de input: Local para ser inserido o comando AT.
- 3. Botão Enviar: Botão para enviar o comando AT.

Portanto, sempre que for enviado um comando específico para o DTN-300, deverão ser aplicados os procedimentos descritos a seguir:

- a. Clicar no botão "Senhas | Comandos avançados".
- **b**. Inserir o comando AT corretamente no "Campo de input".
- c. Clicar no botão "Enviar".

4. Comandos AT específicos para o DTN-485

4.1. Comando de debug (AT+CFGDEV)

O DTN-485 obtém os dados contendo as informações através de comandos modbus-rtu. Na maioria dos casos, os comandos são de leitura dos registradores que armazenam essas informações nos sensores. Ou seja, o DTN-485 envia a requisição de leitura do registrador e espera obter uma resposta como retorno. Essa resposta conterá o dado.

Antes de configurar no DTN-485 o comando modbus, pode-se utilizar o comando de debug para validar se a requisição enviada obtém o retorno esperado. Desta forma, o usuário consegue validar os comandos antes de ocupar a memória no dispositivo e também consegue trabalhar com a resposta do comando.

O formato do comando de debug é observado a seguir:

Tipo de comando	Formato
DEBUG	AT+CFGDEV = comando_modbus, crc_mode
Parâmetro	Descrição do parâmetro
comando_modbus	Comando modbus-rtu (em hexadecimal).
crc_mode	Indica se o DTN-485 deve calcular automaticamente o CRC-16/MODBUS do comando ou se ele será repassado junto ao comando. Pode ser: 0 ou 1, onde: $0 \rightarrow \text{Adicionado o CRC junto ao comando.}$ $1 \rightarrow \text{CRC deve ser calculado automaticamente.}$

Exemplo: Supondo que o comando modbus-rtu para para obter a temperatura de um sensor RS485 seja 01 03 00 00 00 01 84 0A, onde 01 03 00 00 00 1 são os bytes do comando modbus e 84 0A são os bytes do CRC deste comando. Então, para verificar se o comando obtém uma resposta correta, pode ser enviado o comando de debug. Para este caso, o comando poderia ser configurado da seguinte maneira:

Tipo de comando	Formato
DEBUG	CRC no comando: AT+CFGDEV = 01030000001840A,0 CRC automático: AT+CFGDEV = 010300000001,1

4.2. Comando de ação (AT+COMMANDX)

O comando de ação é utilizado para gravar na memória do DTN-485 as requisições modbus-rtu para obter as informações dos sensores conectados a ele. Periodicamente (à cada uplink), o DTN-485 enviará os comandos de ação gravados em sua memória aos sensores conectados a ele. Com isso, ele obterá as respostas desses sensores e formará um pacote enviado para a aplicação.

Ao todo, são 15 comandos (regras flexíveis) de ação que podem ser gravados no dispositivo e como dito anteriormente, esses comandos deverão corresponder ao comando modbus-rtu para ler os registradores que guardam as informações dos sensores.

O formato do comando de ação é observado a seguir:

Tipo de comando	Formato
AÇÃO	AT+COMMANDX = comando_modbus, crc_mode
Parâmetro	Descrição do parâmetro
Х	Indica o valor da regra flexível que será gravado no equipamento. Deve ser um valor inteiro entre 1 e 15.
comando_modbus	Comando modbus-rtu (em hexadecimal).
crc_mode	Indica se o DTN-485 deve calcular automaticamente o CRC-16/MODBUS do comando ou se ele será repassado junto ao comando. Pode ser: 0 ou 1, onde: $0 \rightarrow \text{Adicionado o CRC junto ao comando.}$ $1 \rightarrow \text{CRC}$ deve ser calculado automaticamente.

Exemplo: Supondo que o comando modbus-rtu para para obter a temperatura de um sensor RS485 seja 01 03 00 00 01 84 0A, onde 01 03 00 00 01 1 são os bytes do comando modbus e 84 0A são os bytes do CRC deste comando. Então, para gravar na memória do DTN-485 um comando de ação para obter a temperatura deste sensor, pode ser enviado o comando:

Tipo de comando	Formato
AÇÃO	CRC no comando: AT+COMMAND1 = 01030000001840A,0 CRC automático: AT+COMMAND1 = 01030000001,1

(i) Note que no exemplo foi utilizado a regra flexível 1, mas poderia ser utilizado ou valor (inteiro) entre 1 e 15 para isso.	tro
--	-----

4.3. Comando de retorno (AT+DATACUTX)

Para cada comando de ação que é gravado no DTN-485, deve ser configurado um comando de retorno. Este comando irá atuar sobre a resposta obtida pelo comando de ação. Este comando pode ser utilizado para descartar os bytes da resposta que não são interessantes para a aplicação e criar uma nova resposta, ou simplesmente, exibir toda a mensagem

O formato do comando de ação é observado a seguir:

Tipo de comando	Formato
RETORNO	AT+DATACUT X = length_command , 2 , interval_bytes
Parâmetro	Descrição do parâmetro
x	Indica o valor da regra flexível que será gravado no equipamento. Deve ser um valor inteiro entre 1 e 15. OBS: Como o comando de retorno atua sobre a resposta obtida ao comando de ação, o valor de X deve corresponder à mesma regra flexível do comando de ação configurado.
length_command	Quantidade total, em bytes, do comando de resposta obtido pelo equipamento.
2	Valor específico para que o DTN-485 interprete o comando como um comando de retorno.
interval_bytes	Intervalo de bytes que será retirado da mensagem original e irão formar a nova mensagem. Esta nova mensagem é a que será retornada ao usuário em sua aplicação.

Exemplo: Supondo que a resposta obtida pelo DTN-485 ao comando de ação seja: **01 03 02 00 F4 B9 C3**, onde **01 03 02 00 F4** é a resposta e **B9 C3** são os bytes do CRC deste comando. Supondo que os bytes do CRC não interessem para a nossa aplicação, poderíamos separar eles da resposta original e criar uma nova resposta, sem esta informação. O comando de retorno para isso seria:

Tipo de comando	Formato
RETORNO	AT+DATACUT1 = 7,2,1~5

(j	Nota	É possível incluir mais de um intervalo na mesma mensagem, fazendo: AT+DATACUTX = length_command,2,interval_1, interval_2. Por exemplo: AT+DATACUT5 = 7,2,1~3, 6~7.
----	------	---

4.4. Tipos de payload (AT+PRO)

Para se adequar a diferentes servidores de aplicação, o DTN-485 consegue enviar os dados em diferentes formatos e protocolos.

Os tipos de payload são divididos em 2 partes: formato e protocolo.

Formato:

- JSON
- Hexadecimal

Protocolo:

- UDP
- TCP
- MQTT

O formato do comando para definir o tipo de payload é observado a seguir:

Tipo de comando	Formato
TIPO DE PAYLOAD	AT+PRO = tipo_do_protocolo, tipo_do_formato
Parâmetro	Descrição do parâmetro
tipo do formato	Indica o tipo do formato da mensagem que será enviada. Os tipos podem ser: ● JSON → Tipo 5 ● HEXADECIMAL → Tipo 0
tipo do protocolo	$ \begin{array}{l} \mbox{Indica o tipo do protocolo utilizado pelo equipamento para envio da mensagem. Os tipos podem ser:} \\ \bullet & UDP \rightarrow Tipo 2 \\ \bullet & MQTT \rightarrow Tipo 3 \\ \bullet & TCP \rightarrow Tipo 4 \end{array} $

Exemplo 1: Supondo que a o usuário deseja configurar o DTN-485 para enviar os dados para um servidor de aplicação **MQTT** no formato **JSON**, o comando de payload para isso seria:

Tipo de comando	Formato
TIPO DE PAYLOAD	AT+PRO = 3,5

Exemplo 2: Supondo que a o usuário deseja configurar o DTN-485 para enviar os dados para um servidor de aplicação **TCP** no formato **HEXADECIMAL**, o comando de payload para isso seria:

Tipo de comando	Formato
TIPO DE PAYLOAD	AT+PRO = 4,0

4.4.1 Formato JSON

Para o formato JSON, o DTN-485 irá enviar uma mensagem ao servidor de aplicação da seguinte forma:

{"IMEI":"imei_addr","Model":"device_model","Payload":"data_payload","battery":battery_level,"signal":network_signal}

A explicação de cada parâmetro é observado a seguir:

Parâmetro	Descrição do parâmetro
imei_addr	Endereço de IMEI do dispositivo. O IMEI é o identificador do equipamento, portanto, ele é único para cada dispositivo.
device_model	Indica o modelo do dispositivo. Para caso do DTN-485 será: RS485-NB.
data_payload	Para o caso do DTN-485 serão os dados obtidos nas leituras dos registrados dos dispositivos conectados ao DTN-485. Esses dados são obtidos configurando os comandos AT+COMMANDX e AT+DATACUTX.
battery_level	Indicará o nível de bateria do dispositivo.
network_signal	Indicará a qualidade do sinal obtido na última mensagem.

Exemplo: Um exemplo do comando JSON pode ser observado abaixo:

Neste caso, o DTN-485 foi configurado para obter a temperatura de um sensor que está conectado em sua interface RS485.

O comando modbus de resposta pode ser observado em Payload: **01030200ebf80b**.

É possível observar a intensidade do sinal e também o nível de bateria atual do dispositivo.

4.4.2 Formato HEXADECIMAL

Para o formato HEXADECIMAL, o DTN-485 irá enviar uma mensagem ao servidor de aplicação da seguinte forma:

imei_addr device_version battery_level network_signal gpio_exit_level gpio_exit_flag timestamp payload_version data_payload

A explicação de cada parâmetro é observado a seguir:

Parâmetro	Tamanho	Descrição do parâmetro
imei_addr	8 bytes	Endereço de IMEI do dispositivo. O IMEI é o identificador do equipamento, portanto, ele é único para cada dispositivo.
device_version	2 bytes	Inclui a versão de hardware e a versão de firmware. O "Higher byte" indicará o modelo do sensor e o "Lower byte" indicará a versão de software.
battery_level	2 bytes	Indicará o nível de bateria do dispositivo.
network_signal	1 byte	Indicará a "qualidade" do sinal NB-IoT, onde: $0 \rightarrow -113dBm$ ou menor; $1 \rightarrow -111 dBm;$ $2 à 30 \rightarrow 109 dBm à -53dBm;$ $31 \rightarrow -51 dBm$ $99 \rightarrow$ Sem sinal ou "não detectado
GPIO_EXIT level	1 byte	Indica se o GPIO_EXTI é utilizado como um pino de interrupção. Não se aplica ao DTN-485.
GPIO_EXIT flag	1 byte	Indica se a mensagem gerada é por consequência do pino de interrupção ou não. Não se aplica ao DTN-485.
Timestamp	4 bytes	Indica o horário em que o dispositivo enviou a mensagem.
payload_version	1 byte	Indica como o dispositivo irá tratar diferentes decodes (se forem inseridos no dispositivo).
data_version	N bytes	Para o caso do DTN-485 serão os dados obtidos nas leituras dos registrados dos dispositivos conectados ao DTN-485. Esses dados são obtidos configurando os comandos AT+COMMANDX e AT+DATACUTX.

Exemplo: Um exemplo do comando HEXADECIMAL pode ser observado na imagem a seguir:

🗙 dtn/uplink	
f86366306276878401700cdd13000000	000000
0000000386d46680000000386dfd920	00000
000386dfa0e0000000386df68a000000	00386
df3060000000386def820000000386d	ebfe0
000000386de87a0000000386de4f6	

4.5. Alterar o intervalo de uplink (AT+TDC)

Este comando permite alterar o intervalo em que o dispositivo enviará as mensagens ao servidor de aplicação.

(j)	Nota	Por padrão, o intervalo de uplink do DTN vem configurado para 2 horas.
-----	------	--

O formato do comando para definir o tipo de payload é observado a seguir:

Tipo de comando	Formato
INTERVALO DE UPLINK	AT+TDC = intervalo (em segundos)
Parâmetro	Descrição do parâmetro
intervalo	Define o intervalo (em segundos) em que o dispositivo irá enviar o uplink de dados.

Exemplo 1: Supondo que a o usuário deseja configurar o DTN-485 para enviar os dados para um servidor de aplicação à cada 20 minutos, o comando de payload para isso seria:

Tipo de comando	Formato
INTERVALO DE UPLINK	AT+TDC = 1200

4.6. Excluir as regras flexíveis (AT+CMDEAR)

Este comando permite excluir as regras flexíveis configuradas no dispositivo. O formato do comando para definir o tipo de payload é observado a seguir:

Tipo de comando	Formato
EXCLUIR REGRAS FLEXÍVEIS	AT+CMDEAR= flexible_rule_interval
Parâmetro	Descrição do parâmetro
flexible_rule_interval	Define o intervalo das regras flexíveis que serão excluídas.

Exemplo 1: Supondo que a o usuário deseja excluir do DTN-485 as regras flexíveis de 2 a 5, o comando de payload para isso seria:

Tipo de comando	Formato
EXCLUIR REGRAS FLEXÍVEIS	AT+CMDEAR = 2,5

5. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

1. No site da Khomp, acesse o menu "Suporte Técnico" \rightarrow "Área restrita".

- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- 4. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.

5. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.

6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- **1**. Acesse o menu "Suporte Técnico" \rightarrow "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- **3**. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com, pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento não tem direito a proteção contra interferência prejudicial e não pode causar interferências em sistemas devidamente autorizados.
- Este equipamento não é apropriado para uso em ambientes domésticos, pois poderá causar interferências eletromagnéticas que obrigam o usuário a tomar medidas para minimizar estas interferências.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

Rua Joe Collaço, 253 - Florianópolis, SC +55 (48) 3722.2930 +55 (48) 999825358 WhatsApp suporte.iot@khomp.com