

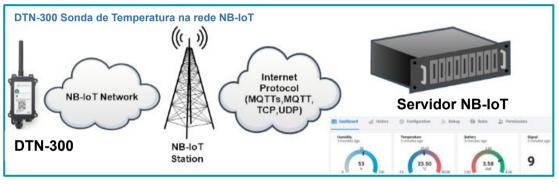
Manual do usuário DTN-300 Sonda de Temperatura

ENABLING TECHNOLOGY

Índice

1. Introdução	página 3
1.1. O que o DTN-300 Sonda de Temperatura?	página 3
1.2 Recursos	página 3
1.3 Especificações	página 4
1.5. LEDs e botões	página 5
1.6. Conexões internas	página 6
1.7. Dimensões	página 7
1.8. Instalar o SIM card	página 9
1.8.1. Chaves de segurança	página 10
2. Configurar o DTN-300	página 12
2.1. Configuração geral do DTN-300 via app Konfig	página 12
2.2. Configurações Específicas para o DTN-300 via app Konfig	página 13
2.3. Conectar na rede NB-loT	página 14
3. Protocolo de Envio e Formato de Dados	página 15
3.1. Formato Json	página 16
3.2. Formato HEX	página 17
4. Conectar-se à rede NB-IoT	página 19
4.1. Como funciona	página 19
4.2. Conectando a rede NB-IoT	página 19
5. Conectando a diferentes servidores	página 20
5.1. Configurando para MQTT	página 20
5.2. Configurando para UDP	página 20
5.3. Configurando para TCP	página 20
5.4. Comando de Downlink	página 20
5.4.1. Comando de Downlink via MQTT	página 20
5.1.1.1. Formato Hexadecimal	página 20
5.1.1.2. Formato JSON	página 21
5.1.2. Comando de Downlink via UDP	página 21
5.1.3. Comando de Downlink via TCP	página 21
6. Comandos especiais	página 22
6.1. Intervalo de uplink	página 22
6.2. Alarme da temperatura	página 22
7. Comandos AT	página 23
7.1. Data Logger	página 24
7.2. Consultando dados salvos	página 24
7.3. Comandos MQTT	página 24
8. Obter acesso à documentação adicional	página 25

1. Introdução


1.1. O que o DTN-300 Sonda de Temperatura?

O DTN-300 Sonda de Temperatura faz parte da linha de endpoints NB-IoT da Khomp. É um sensor projetado para aplicações em Internet das Coisas (IoT). O sistema é utilizado para medir a temperatura ambiente com precisão, transmitindo os dados coletados via rede mobile (NB-IoT)

Com tecnologia NB-IoT, o DTN-300 Sonda de Temperatura oferece suporte para vários métodos de uplink, incluindo MQTT, MQTTs, UDP e TCP, adaptando-se a diferentes necessidades de aplicação e servidores IoT. A tecnologia sem fio utilizada no DTN-300 permite que o dispositivo envie dados e atinja distâncias extremamente longas (com baixas taxas de transmissão). O sistema garante comunicação de longo alcance com alta imunidade a interferências, enquanto minimiza o consumo de energia.

O DTN-300 também possui um recurso de alarme para temperatura, permitindo configurar alertas para notificações imediatas. Além disso, o equipamento conta com a função de armazenamento de dados (datalog), o que permite salvar as informações mesmo quando a rede NB-IoT está fora do ar, enviando-as assim que a conectividade for restabelecida.

Para simplificar a configuração, o DTN-300 oferece suporte ao Bluetooth Low Energy (BLE), permitindo que seja configurado com comandos AT via BLE por meio de um aplicativo celular.

1.2. Recursos

- Bandas NB-IoT: B1 / B2 / B3 / B4 / B5 / B8 / B12 / B13 / B17 / B18 / B19 / B20 / B25 / B28 / B66 / B70 / B85 @H-FDD.
- Leitura de temperaturas de -55 °C a +125 °C.
- Precisão na leitura de ±0.5 °C: -10 °C a +85 °C.
- Comprimento do cabo: 3 metros.
- Uplink via MQTT, TCP ou UDP.
- Múltiplas amostragens em único uplink.
- Downlink para alterar a configuração.
- Suporte para configuração remota via BLE.
- Transmissão periódica.
- Slot para SIM card Nano NB-IoT.
- Bateria Li/SOCI2 de 8500 mAh.
- Grau de proteção waterproof IP65.

1.3. Especificações

Características comuns de DC:

- Tensão de alimentação: 2,5-3,6 V.
- Temperatura operacional: -40 °C até +85 °C.

Suporte para bandas NB-IoT:

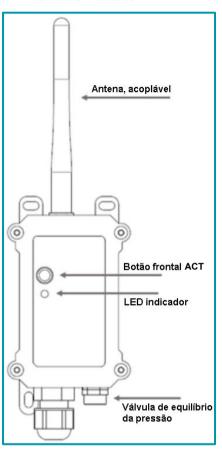
- B1 @H-FDD: 2100 MHz.
- B2 @H-FDD: 1900 MHz.
- B3 @H-FDD: 1800 MHz.
- B4 @H-FDD: 2100 MHz.
- B5 @H-FDD: 860 MHz.
- B8 @H-FDD: 900 MHz.
- B12 @H-FDD: 720 MHz.
- B12 @H+FDD: 720 MHz.
 B13 @H-FDD: 740 MHz.
- D13 @111 DD. 740 M112
- B17 @H-FDD: 730 MHz.
 B18 @H-FDD: 870 MHz.
- B19 @H-FDD: 870 MHz.
- B20 @H-FDD: 790 MHz.
- B25 @H-FDD: 1900 MHz.
- B28 @H-FDD: 750 MHz.
- B66 @H-FDD: 2000 MHz.
- B70 @H-FDD: 2000 MHz.
- B85 @H-FDD: 700 MHz.

Bateria:

- Bateria Li/SOCI2 n\u00e3o recarreg\u00e1vel.
- Capacidade: 8500 mAh.
- Autodescarga: <1% / Ano a +25 °C.
- Corrente máxima contínua: 130 mA.Corrente máxima de impulso: 2 A, 1 segundo.

Consumo de energia:

- Modo de suspensão: 10 μA @ 3,3 v.
- Modo de transmissão: 350 mA @ 3,3 v.

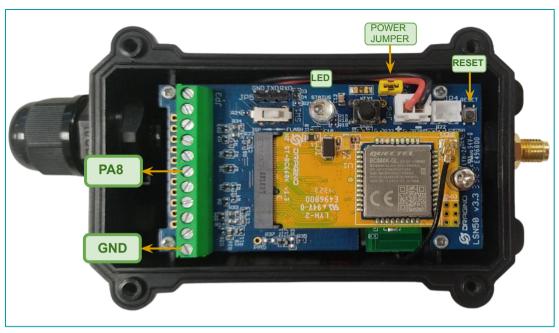

Sonda de temperatura:

- Leitura de temperatura: -55 °C a +125 °C.
- Precisão na leitura de ±0,5 °C: -10 °C a +85 °C.
- Temperatura de operação: -55 °C a +125 °C.
- Umidade de operação: 0-90% (sem condensação).
- Variação ao longo do tempo: <0,03 °C/ano.
- Proteção padrão waterproof, apenas a ponta do sensor é resistente à água.
- Comprimento do cabo: 3 metros.

Garantias e certificações:

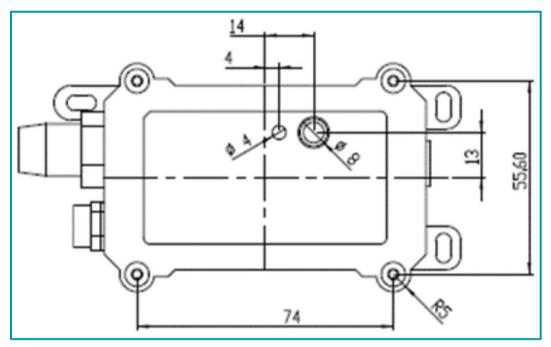
- Garantia total (legal + garantia Khomp): 1 ano.
 - Garantia legal: 90 dias.
 - Garantia Khomp: 9 meses.
- Certificação Anatel.
- Indústria certificada ISO 9001.

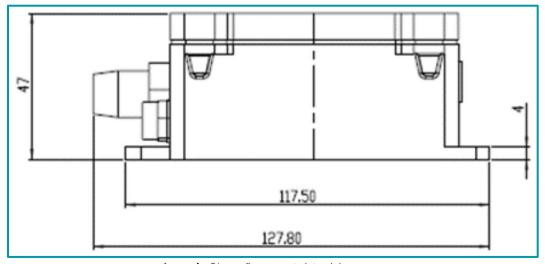
1.5. LEDs e botões



- Nota
- Quando o equipamento está executando um programa, os botões podem ficar inválidos.
- É melhor pressionar o botão depois que o DTN-300 concluir a execução do programa.

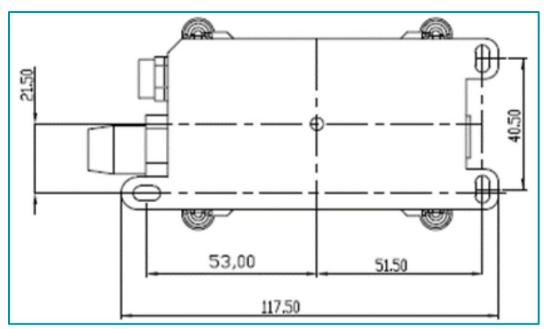
Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	Se o sensor já estiver conectado à rede NB-IoT, o sensor enviará um pacote de uplink, o LED pisca azul uma vez. Enquanto isso, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o dispositivo.
Pressionar o botão ACT por mais de 3 segundos	Dispositivo ativado	O LED pisca verde rapidamente 5 vezes, o dispositivo entrará no modo OTA por 3 segundos. Em seguida, ENTRA na rede NB-IoT. O LED acende verde continuamente por 5 segundos após entrar na rede. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o equipamento, independentemente de o dispositivo ingressar ou não na rede NB-IoT.
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED ficará aceso na cor vermelho por 5 segundos. Significa que o DTN-300 está no modo de suspensão profunda.


1.6. Conexões internas


Legenda: Interior do DTN-300 com indicações dos conectores internos.

Interface	Funções
PA8	Entrada de dados (Data), pino 6
GND	GND, pino 11
LED	LED
POWER JUMPER	Jumper para ligar o dispositivo
RESET	Botão para reiniciar o dispositivo

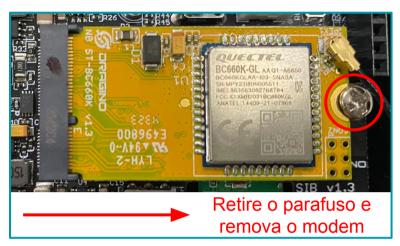
1.7. Dimensões



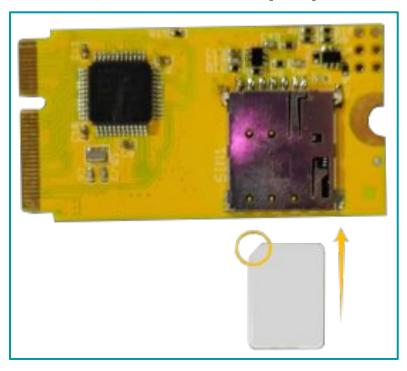
Legenda: Dimensões na parte frontal do sensor.

Legenda: Dimensões na parte lateral do sensor.

7



Legenda: Dimensões na parte traseira do sensor.


1.8. Instalar o SIM card

Aplique as indicações observada a seguir para instalar o SIm card no DTN-300.

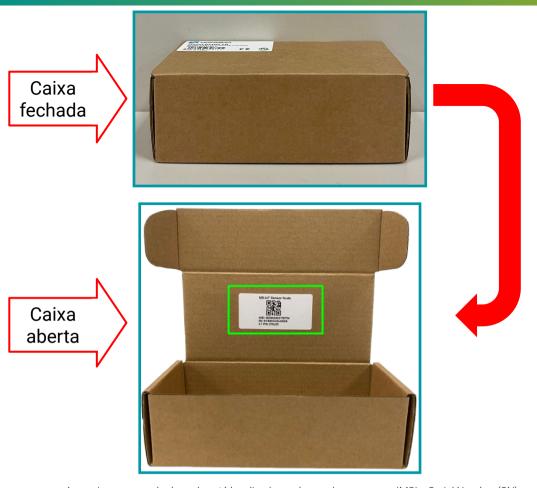
- 1. Desligue o DTN-300 para adicionar o SIM card corretamente.
- 2. Abra o DTN-300 e desparafuse o modem mobile. Remova-o da placa principal, puxando o modem do slot.

3. Na parte de trás do modem, insira o SIM card como indica a imagem a seguir.

4. Após ter adicionado o SIM card no modem, instale o modem na placa principal do DTN-300 e prenda o modem com o parafuso de fixação.

1.8.1. Chaves de segurança

Como mencionado anteriormente, o dispositivo possui um conjunto único de chaves para registro no servidor. Para ingressar o dispositivo na rede mobile, é necessário inserir as chaves no servidor e, após isso, ligar o dispositivo para que ele inicie o processo de JOIN (adesão à rede) automaticamente.


As chaves de segurança estão localizadas em uma etiqueta dentro da caixa do produto. Além das chaves, a etiqueta também contém outras chaves privadas do dispositivo, utilizadas para diferentes processos.

- Guarde bem as chaves de cada equipamento.
- Somente as chaves podem adicionar o endpoint na rede mobile.
- As chaves também são necessárias para alterar as configurações do dispositivo.

Abra a caixa e observa a etiqueta no lado interno da tampa (na embalagem).

Um exemplo de onde localizar a etiqueta com as chaves do DTN-300 sonda de temperatura é observado a seguir:

A seguir, um exemplo de onde está localizada as chaves de segurança, IMSI e Serial Number (SN):

2. Configurar o DTN-300

O DTN-300 suporta a conexão via BLE (Bluetooth) com outros dispositivos. Com isso, a Khomp disponibiliza o aplicativo **KONFIG** para realizar a configuração dos parâmetros do endpoint.

Os endpoints da linha DTN são configurados através de comandos AT. Portanto, aceitam comandos do tipo:

AT + comando = valor_do_parâmetro

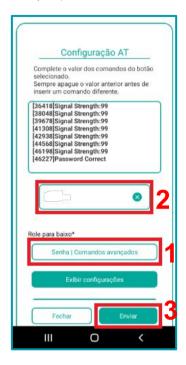
Para facilitar aos usuários que possuem endpoints da linha DTN, o aplicativo Konfig possui uma série de botões predefinidos onde visam economizar tempo na configuração e deixá-la mais dinâmica e simples. O aplicativo está disponível para as plataformas Android e iOS e pode ser baixado através dos links:

- Android: https://play.google.com/store/apps/details?id=com.khomp.konfig&pli=1
- iOS: https://apps.apple.com/us/app/konfig/id6739005051

2.1. Configuração geral do DTN-300 via app Konfig

Os endpoints da linha DTN possuem a mesma base de configuração inicial. Essas configurações podem facilmente serem feitas através do aplicativo Konfig, com os botões predefinidos.

Disponibilizamos um manual a parte para este tipo de configuração, onde será encontrado a maneira correta de usar os comandos e exemplos para auxiliar no processo. A documentação para a configuração geral pode ser obtida através do endereço observado a seguir:


https://docs.google.com/presentation/d/1WNFs9TNmAUDxLEtKSFsrdZ6zkKZDOyjAikiBBoTqcol/edit#slide=id.g2d6c81bd0a1_1_0

2.2. Configurações Específicas para o DTN-300 via app Konfig

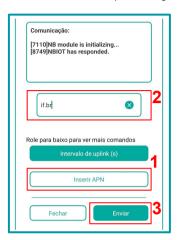
Como informado anteriormente, a configuração dos parâmetros nos endpoints da linha DTN é feita através de comandos AT.

O aplicativo Konfig, possui um botão onde o usuário pode informar os comandos AT de configurações específicas e também os seus valores.

A imagem a seguir possui indicações para enviar comandos AT.

Legenda:

- 1. Botão Senha | Comandos Avançados: Botão para habilitar o local de envio dos comandos específicos.
- 2. Campo de input: Local para ser inserido o comando AT.
- 3. Botão Enviar: Botão para enviar o comando AT.


Portanto, sempre que for enviado um comando específico para o DTN-300, deverão ser aplicados os procedimentos descritos a seguir:

- a. Clicar no botão "Senhas | Comandos avançados".
- **b**. Inserir o comando AT corretamente no "Campo de input".
- c. Clicar no botão "Enviar".

2.3. Conectar na rede NB-IoT

Após inserir o SIM card, como mostra o subtítulo "Instalando o SIM card", pressione o botão frontal do DTN-300 por mais de 5 segundos (até que o LED iniciar a piscar), o sistema abre o canal BLE por 60 segundos para configuração, como vimos na etapa anterior.

Utilize o botão Inserir APN para configurar a APN do SIM card no dispositivo.

Intensidade do Sinal:

Intensidade do sinal na rede NB-IoT.

Valores:

- 0-113 dBm ou menos
- 1-111 dBm
- 2...30 -109 dBm a -53 dBm
- 31 -51 dBm ou maior
- 99 Desconhecido ou indetectável

Ou use o campo de comandos avançados e envie o comando:

AT+APN=<APN da operadora>

Exemplo: AT+APN=zap.vivo.com.br

Para otimizar o tempo de conexão, é importante selecionar a banda de frequência adequada, considerando fatores como a região, operadora, rede disponível e a distância. Utilize o botão Filtro de Banda mostrado no tópico 2.1. Configuração via BLE para configurar a banda ou use o campo de comandos avançados e envie o comando:

AT+QBAND=<número de bandas>,<bandas separadas por vírgula>

Exemplo: AT+QBAND=2,3,28 (configura o dispositivo para usar a banda 3 e a 28).

3. Protocolo de Envio e Formato de Dados

Para atender aos diferentes servidores, o DTN-300 oferece suporte para vários formatos de carga útil (payload) e protocolo de envío. Os formatos de carga útil são:

```
FORMATO 5 - JSON (Tipo = 5)

FORMATO 0 - HEX (Tipo = 0)
```

E o usuário pode usar os seguintes protocolos de envio:

```
PROTOCOLO 2 - UDP

PROTOCOLO 3 - MQTT

PROTOCOLO 4 - TCP
```

O protocolo de envio e o formato da carga útil devem ser configurados através do botão Protocolo de Transporte e Formato ou do comando avançado AT+PRO. A estrutura da configuração através do botão é a mesma do comando AT+PRO, sendo ela:

```
→ AT+PRO=2,0 // Conexão UDP e payload HEX
→ AT+PRO=2,5 // Conexão UDP e payload JSON
→ AT+PRO=3,0 // Conexão MQTT e payload HEX
→ AT+PRO=3,5 // Conexão MQTT e payload JSON
→ AT+PRO=4,0 // Conexão TCP e payload HEX
→ AT+PRO=4,5 // Conexão TCP e payload JSON
```

No aplicativo, as mesmas configurações mostradas anteriormente, podem ser aplicadas da seguinte forma:

O aplicativo é utilizado apenas para configurar o dispositivo.

3.1. Formato Json

O DTN-300 suporta o formato JSON (JavaScript Object Notation), uma estrutura de dados leve, ideal para armazenar e transmitir informações de forma organizada e legível.

Utilizando pares "chave: valor" e listas ordenadas, o formato JSON facilita o intercâmbio de dados entre sistemas e é amplamente usado em APIs e aplicações Web pela sua simplicidade e compatibilidade com várias linguagens de programação.

O formato JSON Geral é observado a seguir:

```
"IMEI": "863663062798914",
"Model": "D23-NB",
"temperature1":31.1,
"temperature2":28.5,
"temperature3":12.3,
"interrupt":0,
"interrupt_level":0,
"battery":3.24,
"signal":14,
"time": "2024/11/20 06:04:29",
"1":[204.8,0.0,-409.5,"2024/11/20 05:29:33"],
"2":[204.8,0.0,-409.5,"2024/11/20 05:14:33"],
"3":[204.8,0.0,-409.5,"2024/11/20 04:59:33"],
"4":[204.8,0.0,-409.5,"2024/11/20 04:44:33"],
"5":[204.8,0.0,-409.5,"2024/11/20 04:29:33"],
"6":[204.8,0.0,-409.5,"2024/11/20 04:14:33"],
"7":[24.9,60.8,-409.5,"2024/11/20 02:03:04"],
"8":[24.8,71.2,-409.5,"2024/11/14 10:00:21"]
```

3.2. Formato HEX

No formato HEX, os dados são codificados em hexadecimal, representando cada byte em dois caracteres hexadecimais. Esse formato é eficiente para transmissões compactas de dados, sendo adequado para sistemas com restrições de largura de banda e processamento. Os oitos primeiros Bytes representam o IMEI do equipamento. Após isso cada par de caracteres representa um valor de byte em formato binário simplificado, facilitando a transmissão e o armazenamento com menor ocupação de espaço comparado ao formato de texto.

O formato HEX é indicado a seguir.

f863663062768693007c0dd30d01Ffff000000000000de024d386d551900dd0253386e245400de025d386 e20d000e0025f386e1d4c00e10262386e19c800e20268386e164400e60286386e12c000eb02c5386e0f3c 00eb02c5386e0bb8

f863663062798914	f460083513507314	0382	0ca5	12	010000000000	0115
f+IMEI	f+IMSI	Versão	Bateria	Sinal	Reservado	Temp1
8 Bytes	8 Bytes	2 Bytes	2 Bytes	1 Byte	6 Byte	2 Byte

0113	0113	673d7d14	0800 0000 f001 673d7d14
Temp2	Temp3	Timestamp	Temp1 Temp2 Temp3 Timestamp
2 Byte	2 Byte	4 Bytes	8 Bytes

0800 0000 f001 673d7039	0800 0000 f001 673d6cb5	0800 0000 f001 673d6931
segunda medição mais recente	terceira medição mais recente	quarta medição mais recente
8 Bytes	8 Bytes	8 Bytes

0800 0000 f001 673d65ad	0800 0000 f001 673d6229	00f9 0260 f001 673d435800	00f8 02c8 f0016 735ca35
quinta medição mais recente	sexta medição mais recente	sétima medição	oitava medição
8 Bytes	8 Bytes	8 Bytes	8 Bytes

Versão:

Esses bytes incluem informações sobre a versão de hardware e software.

- Byte mais significativo: Especifica o modelo do sensor. Exemplo: 0x03 para DTN-300 sonda de temperatura.
- Byte menos significativo: Especifica a versão do software. Exemplo: 0x82 = 130, o que indica versão de firmware 1.3.0.

BAT (Informação da Bateria):

• Exemplo: 0x0CA5 = 3237 mV

Intensidade do Sinal

Intensidade do sinal na rede NB-IoT.

• Exemplo: 0x12 = 18

Valores:

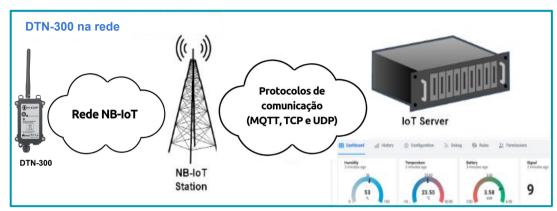
- 0 -113 dBm ou menos.
- 1-111 dBm
- 2-30-109 dBm a -53 dBm
- 31 -51 dBm ou major
- 99 Desconhecido ou indetectável

Temperatura 1:

Indica o valor da temperatura lida pela sonda de temperatura.

- Exemplo de payload: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26,1 °C
- Exemplo: FF3FH: (FF3F & 8000 == 1), temp = (FF3FH 65536)/10 = -19,3 °C.

TimeStamp:


Exemplo de TimeStamp: 64d49439(H) = 1691653177(D)

 Insira o valor decimal em [epochconverter.com](https://www.epochconverter.com) para obter o horário exato.

4. Conectar-se à rede NB-IoT

4.1. Como funciona

O DTN-300 está equipado com um módulo NB-IoT. O firmware pré-carregado no DTN-300 obterá dados ambientais a partir de sensores e enviará os valores para a rede local NB-IoT por meio do módulo NB-IoT. A rede NB-IoT encaminhará esses valores para o servidor IoT através do protocolo definido pelo DTN-300. A seguir, é observada uma imagem com a estrutura da rede:

4.2. Conectando a rede NB-IoT

Com o chip já inserido no módulo, vamos remover e colocar o Jumper de Power novamente. O dispositivo deixará o Bluetooth ativo durante 60 segundos para a configuração via BLE, como vimos na etapa anterior.

Paras a configuração da rede, deve-se realizar o seguintes comandos:

"AT+APN=<APN da operadora>" ex.: AT+APN=zap.vivo.com.br

Para otimizar o tempo de conexão, é importante selecionar a banda de frequência mais adequada para o funcionamento do equipamento, considerando fatores como a região e a rede disponível. "AT+QBAND=2,3,28".

Após a conexão ser bem-sucedida, o usuário pode usar AT+QENG=0 para verificar qual banda está realmente em uso.

5. Conectando a diferentes servidores

5.1. Configurando para MQTT

```
AT+PRO=3,0 // Define o uso do protocolo MQTT para uplink e o formato do uplink para hexadecimal AT+SERVADDR=120.26.8.126,1883 // Define o endereço do servidor MQTT e a porta (neste caso, 1883). AT+CLIENT=<identificador unico> // Configura o identificador de CLIENTE (Client ID) do MQTT. AT+UNAME=<usuario> // Configura o nome de usuário do MQTT para autenticação. AT+PWD=<senha> // Define a senha do MQTT para autenticação. AT+PUBTOPIC=<topico/uplink> // Define o tópico de publicação (envio) para o MQTT. AT+SUBTOPIC=<topico/dowlink> // Define o tópico de assinatura (recepção) para o MQTT.
```


O tópico de publicação deve ser diferente do tópico de assinatura!

5.2. Configurando para UDP

AT+PRO=2,0 // Define o uso do protocolo MQTT para uplink e o formato do uplink para hexadecimal. AT+SERVADDR=120.24.4.116,5601 // Define o endereço do servidor UDP e a porta (neste caso, 5601).

5.3. Configurando para TCP

AT+PRO=4,1 // Define o uso do protocolo TCP para uplink, com formato de carga JSON.
AT+SERVADDR=120.24.4.116,5600 // Define o endereço do servidor TCP e a porta (neste caso, 5600).

5.4. Comando de Downlink

Para realizar comandos via downlink ao DTN-300 é preciso levar em consideração a janela de recepção que o dispositivo irá ficar disponível para receber o downlink. Para esse modelo, ao realizar um uplink, a janela de recepção de dados fica aberta durante 3 segundos.

5.1.1. Comando de Downlink via MQTT

5.1.1.1. Formato Hexadecimal

No formato hexadecimal do MQTT, somente alguns comandos são compatíveis, pois muitos comandos exigem suporte a strings. Os comandos disponíveis para o formato hexadecimal no MQTT seguem o mesmo padrão dos comandos em hexadecimal usados no LoRaWAN. Veja o "apêndice" de comandos Downlink (no final deste manual).

5.1.1.2. Formato JSON

No modo MQTT com formato JSON, é preciso configurar todos os comandos para garantir o funcionamento correto. Se precisar ajustar alguma configuração específica, aplique o modelo fornecido a seguir, para realizar as modificações necessárias.

```
{
"AT+SERVADDR":"119.91.62.30,1882",
"AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs",
"AT+UNAME":"usuariokhomp",
"AT+PWD":"senhakhomp",
"AT+PUBTOPIC":"teste/uplink",
"AT+SUBTOPIC":"teste/downlink",
"AT+TDC":"7200",
.
.
.
.
```

5.1.2. Comando de Downlink via UDP

O comando de downlink segue o mesmo formato dos comandos AT, porém deve ser envolvido por chaves {} para ser aceito. Por exemplo, para definir o tempo de transmissão para 300 segundos, aplique o comando observado a seguir:

5.1.3. Comando de Downlink via TCP

O comando de downlink segue o mesmo formato dos comandos AT, porém deve ser envolvido por chaves {} para ser aceito. Por exemplo, para definir o tempo de transmissão para 300 segundos, aplique o comando a seguir:

6. Comandos especiais

6.1. Intervalo de uplink

Esse comando permite definir o intervalo de tempo para envio dos dados. Por padrão, o sensor enviará transmissões (uplinks) a cada 2 horas

O usuário pode usar os seguintes comandos para alterar o intervalo de uplink:

AT+TDC=7200

→ Define o intervalo de atualização para 7200 segundos.

Além disso, é possível pressionar o botão por 3 segundos para ativar uma transmissão manual.

6.2. Alarme da temperatura

É possível usar os comandos observados a seguir, para definir os limites do alarme:

AT+TDC=7200

→ Define os valor mínimos (min) e máximo (max) do alarme.

Para comando downlink, via formato hexadecimal, O primeiro byte é o comando(08). O segundo byte indica o valor mínimo de temperatura, e o terceiro byte o valor máximo da temperatura. O restante dos bytes deve ser configurado como 0.

Exemplo: Configurando o alarme para um valor mínimo de -12 graus e um valor máximo de 20 graus.

0x08F41400000000

7. Comandos AT

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Exibir as configurações gerais.	AT+CFG	Será exibido uma lista com as configurações do endpoint, por exemplo: AT+MODEL=PS-NB,v1.2.4 AT+CFGMOD=1 AT+DEUI=863663062782884 AT+PWORD=****** AT+SERVADDR=NULL AT+CLIENT=863663062782884 AT+UNAME=NULL AT+PWD=NULL AT+PWD=NULL AT+PUBTOPIC=NULL AT+SUBTOPIC=NULL AT+TDC=7200 AT+INTMOD=0 AT+APN=If.br AT+PRO=3,5 OK
Configurar ou exibir o endereço do servidor.	AT+SERVADDR	ОК

 $\begin{tabular}{l} "AT=CFG" \to Este comando exibe todas as configurações, a tabela \'e apenas para fins demonstrativos. \end{tabular}$

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Reinicia o dispositivo.	AT+ATZ	
Obter o intervalo atual de uplink. Observação: O intervalo é dado em milisegundos, ou seja, 10000 = 10000 / 1000 = 10 s.	AT+TDC=?	30000 OK
Define o intervalo de uplink do endpoint.	AT+TDC=60000	
Observação 1: O intervalo deverá ser definido em milissegundos.		OK
Observação 2: O menor valor possível é 6000 = 6 s.	Observação: 60000 = 60 s	
Configura os diferentes requisitos de servidor. Mais informações no subtítulo 4.	AT+PRO	ОК
Exibe ou configura o servidor DNS	AT+DNSCFG	ОК

7.1. Data Logger

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
a . 0 ou 1 habilita ou desabilita a função	AT+CLOCKLOG=a,b,c,d	
,	AT+CLOCKLOG=1,65535,15,8	
b. Especifica o tempo das amostras em segundos.		
c. Especifique o intervalo de tempo para a realização das medições do sensor.		ок
d. Quantidade de medições que serão enviada junto ao Uplink.		

Nota

"AT+CLOCKLOG=1,65535,0,0" ightarrow Desativa a gravação dos dados.

• Se o parâmetro 'b' estiver definido como 65535, o dispositivo iniciará a gravação dos dados após o acesso ao servidor.

7.2. Consultando dados salvos

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Exibe o histórico salvo, registra até 32 grupos de dados.	AT+CDP	ОК
	AT+CDP=0	ОК

7.3. Comandos MQTT

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Configura ou exibe o nome em que o dispositivo aparecerá no broker.	AT+CLIENT	ОК
Configura ou exibe o usuário que irá acessar o broker.	AT+UNAME	OK
Configura ou exibe a senha que o dispositivo irá acessar o servidor.	AT+PWD	ОК
Configura ou exibe o tópico de publicação MQTT.	AT+PUBTOPIC	ОК
Configura ou exibe o inscrição MQTT.	AT+SUBTOPIC	ОК

8. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

- 1. No site da Khomp, acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- 4. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.
- **5**. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.
- 6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- 1. Acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- 3. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com , pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento n\u00e3o tem direito a prote\u00e7\u00e3o contra interfer\u00e9ncia prejudicial e n\u00e3o pode causar interfer\u00e9ncias em sistemas devidamente autorizados.
- Este equipamento n\u00e3o \u00e9 apropriado para uso em ambientes dom\u00e9sticos, pois poder\u00e1 causar interfer\u00e9ncias eletromagn\u00e9ticas que obrigam o usu\u00e1rio a tomar medidas para minimizar estas interfer\u00e9ncias.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

