

Manual do usuário DTN-300 Contador de Pulsos

ENABLING TECHNOLOGY

Khomp - Todos os direitos reservados

Índice

1. Introdução	página 3
1.1. O que é DTN-300 Contador de Pulsos?	página 3
1.2. Recursos	página 3
1.3. Especificações	página 4
1.4. Modo de suspensão e modo de trabalho	página 5
1.5. LEDs e botões	página 6
1.6. Conexões internas	página 7
1.7. Dimensões	página 8
2. SIM card e chave de ativação	página 10
2.1. Instalar o SIM card	página 10
2.2. Chave de ativação	página 11
3. Configuração do DTN-300	página 13
3.1. Configuração geral via app Konfig	página 13
3.2. Configurações Específicas para o DTN-300 via app Konfig	página 14
4. Protocolo de Envio e Formato de Dados	página 15
4.1. Formato Json	página 16
4.2. Formato HEX	página 18
5. Conectar na rede NB-IoT	página 20
5.1. Como funciona	página 20
5.2. Conectar na rede NB-IoT	página 20
6. Conectar em diferentes servidores	página 21
6.1. Configurar em MQTT	página 21
6.2. Configurando para UDP	página 21
6.3. Configurando para TCP	página 21
6.4. Comando de Downlink	página 21
6.4.1. Comando de Downlink via MQTT	página 21
6.4.1.1. Formato Hexadecimal	página 21
6.4.1.2. Formato JSON	página 22
6.4.2. Comando de Downlink via UDP	página 22
6.4.3. Comando de Downlink via TCP	página 22
7. Comandos especiais do DTN-300	página 23
7.1. Intervalo de uplink	página 23
7.2. Borda de leitura	página 23
7.3. Modo de contagem	página 23
7.4. Define valor do contador	página 23
7.5.Limpa todos os contadores	página 24
7.6. Flag de cálculo	página 24
8. Comandos AT	página 24
8.1. Data Logger	página 26
8.2. Consultando os dados salvos	página 26
8.3. Comandos MQTT	página 26
9. Obter acesso à documentação adicional	página 27

1. Introdução

1.1. O que é DTN-300 Contador de Pulsos?

O DTN-300 Contador de Pulsos faz parte da linha de endpoints DTN da Khomp. É um sensor projetado para aplicações em Internet das Coisas (IoT). Ele possui três entradas dedicadas para a leitura de pulsos, ideal para monitorar dispositivos como hidrômetros., enviando os dados coletados via rede mobile (NB-IoT).

Com tecnologia NB-IoT, o DTN-300 Contador de Pulsos oferece suporte para vários métodos de uplink, incluindo MQTT, UDP e TCP, adaptando-se a diferentes necessidades de aplicação e servidores IoT. A tecnologia sem fio utilizada no DTN-300 Contador de Pulsos permite que o dispositivo envie dados e atinja distâncias extremamente longas com baixas taxas de transmissão. Isso garante comunicação de longo alcance com alta imunidade a interferências, enquanto minimiza o consumo de energia.

Para simplificar a configuração, o DTN-300 Contador de Pulsos oferece suporte ao Bluetooth Low Energy (BLE), permitindo que seja configurado com comandos AT via BLE por meio de um aplicativo celular.

1.2. Recursos

- 3 x contadores de pulso.
- Uplink via MQTT, TCP ou UDP.
- Múltiplas amostragens em único uplink.
- Downlink para alterar a configuração.
- Suporte para configuração remota via BLE.
- Transmissão periódica.
- Slot para cartão Nano SIM NB-IoT.
- Bateria de 8500 mAh Li/SOCI2.
- Grau de proteção waterproof IP65.

1.3. Especificações

Características comuns de DC

- Tensão de alimentação: 2,5-3,6 V.
- Temperatura operacional: -40 °C até +85 °C

Suporte para bandas NB-IoT

- B1 @H-FDD: 2100 MHz
- B2 @H-FDD: 1900 MHz
- B3 @H-FDD: 1800 MHz
- B4 @H-FDD: 2100 MHz
- B5 @H-FDD: 860 MHz
- B8 @H-FDD: 900 MHz
- B12 @H-FDD: 720 MHz
- B13 @H-FDD: 740 MHz
- B17 @H-FDD: 730 MHz
- B18 @H-FDD: 870 MHz
- B19 @H-FDD: 870 MHz
- B20 @H-FDD: 790 MHz
- B25 @H-FDD: 1900 MHz
- B28 @H-FDD: 750 MHz
- B66 @H-FDD: 2000 MHz
- B70 @H-FDD: 2000 MHz
- B85 @H-FDD: 700 MHz

Bateria

- Bateria Li/SOCI2 não recarregável.
- Capacidade: 8500 mAh.
- Autodescarga: <1% / Ano a 25 °C.
- Corrente máxima contínua: 130 mA.Corrente máxima de impulso: 2 A, 1 segundo.

Consumo de energia

- Modo de suspensão: 10 μA @ 3,3 V
- Modo de transmissão: 350 mA @ 3,3 V

Leitores de pulso

- Intervalo de tempo entre pulsos:
 - Δt > 50 ms: Contagem precisa
 - 30 ms > Δt > 50 ms: Contagem imprecisa
- Δt < 30 ms: Não realiza contagem
- Contagem de até 16,7 milhões de pulsos
- Monitoramento simultâneo de 3 contadores

Garantias e certificações

- Garantia total (legal + garantia Khomp): 1 ano
 - Garantia legal: 90 dias
 - Garantia Khomp: 9 meses
- Certificação Anatel
- Indústria certificada ISO 9001

1.4. Modo de suspensão e modo de trabalho

- **Modo de suspensão profunda**: Quando o equipamento não tem sensores ativados, ele desabilita a NB-IoT. Este modo é usado na etapa de armazenamento e envio (ativa a rede NB-IoT somente quando é necessário, para economizar bateria).
- Modo de trabalho: Neste modo, o equipamento funciona como Sensor NB-IoT, para ingressar na rede e enviar dados de suas entradas para o servidor. Entre cada amostragem, transmissão ou recepção periódica, o sensor está no modo IDLE. No modo IDLE, o sensor tem o mesmo consumo de energia que no modo Deep Sleep.

1.5. LEDs e botões

Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	 Se o sensor já estiver conectado à rede NB-IoT, o sensor envia um pacote de uplink e o LED pisca azul uma vez. O módulo Bluetooth estará ativo, possibilitando a conexão via Bluetooth para configurar o equipamento.
Pressionar o botão ACT por mais de 3 segundos	Dispositivo ativado	O LED pisca verde rapidamente 5 vezes, o equipamento entra no modo OTA por 3 segundos. Em seguida, acessa a rede NB-IoT. O LED acende verde continuamente por 5 segundos, após acessar a rede NB-IoT. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo, possibilitando a conexão via Bluetooth para configurar o equipamento (independentemente de ingressar ou não na rede mobile).
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED fica aceso na cor vermelha por 5 segundos e o DTN-300 entra no modo de suspensão profunda.

1.6. Conexões internas

Legenda: Interior do sensor com indicações dos conectores internos.

Interface	Pino	Funções
VDD	1	Saída controlável de 3,3 V, (nível de tensão igual ao da bateria, 2.6–3.6 V).
PA8	9	Leitor de pulsos 1
PA4	3	Leitor de pulsos 2
PB15	10	Leitor de pulsos 3
LED	-	LED
POWER JUMPER	-	Jumper para ligar o dispositivo
RESET	-	Botão para reiniciar o dispositivo

Legenda: Dimensões na parte frontal do DTN-300.

Legenda: Dimensões na parte lateral do DTN-300.

Legenda: Dimensões na parte traseira do DTN-300.

2. SIM card e chave de ativação

2.1. Instalar o SIM card

O DTN-300 necessita de um SIM card instalado no slot do modem interno para operar na rede NB IoT. Aplique as indicações observada a seguir para instalar o SIM card no DTN-300.

1. Desligue o DTN-300 para adicionar o SIM card corretamente.

2. Abra o DTN-300 e desparafuse o modem mobile. Remova-o da placa principal, puxando o modem do slot.

3. Na parte de trás do modem, insira o SIM card no slot, como indica a imagem a seguir.

4. Após ter adicionado o SIM card no modem, instale o modem na placa principal do DTN-300 e prenda o modem com o parafuso de fixação.

2.2. Chave de ativação

O dispositivo possui um conjunto único de chaves (OTAA keys) para registro no servidor de rede mobile (NB-IoT).

Para ingressar o equipamento na rede é preciso apenas inserir as chaves no servidor NB-IoT e após feito isso, ligar o dispositivo para que ele inicie o processo de JOIN (adesão à rede) automaticamente.

As chaves de ativação OTAA estão localizadas em uma etiqueta, dentro da caixa do produto. Nesta etiqueta também se encontram algumas outras chaves privadas do dispositivo, utilizada para outros processos.

Abra a caixa e observa a etiqueta no lado interno da tampa (na embalagem). Um exemplo de onde localizar a etiqueta com as chaves do DTL-300 é observado a seguir:

A seguir, é observada uma imagem com um exemplo de como deve ser a etiqueta:

Nota

Alguns números foram ocultados por questões de privacidade e segurança.

3. Configuração do DTN-300

O DTN-300 suporta a conexão via BLE (Bluetooth) com outros dispositivos. Com isso, a Khomp disponibiliza o aplicativo **KONFIG** para realizar a configuração dos parâmetros do endpoint.

Os endpoints da linha DTN são configurados através de comandos AT. Portanto, aceitam comandos do tipo:

AT + comando = valor_do_parâmetro

Para facilitar aos usuários que possuem endpoints da linha DTN, o aplicativo Konfig possui uma série de botões predefinidos onde visam economizar tempo na configuração e deixá-la mais dinâmica e simples. O aplicativo está disponível para as plataformas Android e iOS e pode ser baixado através dos links:

- Android: https://play.google.com/store/apps/details?id=com.khomp.konfig&pli=1
- iOS: https://apps.apple.com/us/app/konfig/id6739005051

3.1. Configuração geral do DTN-300 via app Konfig

Os endpoints da linha DTN possuem a mesma base de configuração inicial. Essas configurações podem facilmente serem feitas através do aplicativo Konfig, com os botões predefinidos.

Disponibilizamos um manual a parte para este tipo de configuração, onde será encontrado a maneira correta de usar os comandos e exemplos para auxiliar no processo. A documentação para a configuração geral pode ser obtida através do endereço observado a seguir:

https://docs.google.com/presentation/d/1WNFs9TNmAUDxLEtKSFsrdZ6zkKZD0yjAikiBBoTqcol/edit#slide=id.g2d6c81bd0a1_1_0

3.2. Configurações Específicas para o DTN-300 via app Konfig

Como informado anteriormente, a configuração dos parâmetros nos endpoints da linha DTN é feita através de comandos AT.

O aplicativo Konfig, possui um botão onde o usuário pode informar os comandos AT de configurações específicas e também os seus valores.

A imagem a seguir possui indicações para enviar comandos AT.

-	Confi	guraçã	o AT	-
Compl	ete o valor	dos coma	andos do bo	tão
Sempr	e apague o	valor ante	erior antes o	ie
(De 410	IRianal Pin	eneth-00	ne.	_
[38048	Signal Str	ength:99		
[39678	Signal Str	ength:99		
[41308	Signal Str	ength:99 ength:99		
[44568	Signal Str	ength:99		
[46198	Signal Str Password	ength:99		
-				
	1		\otimes	
				-
Role par	a baixo*			_
	Senha I Cor	mandos a	vancados	
	251110	1	1000	
	Exibir	configura	ções	
				_
		-		
			Suma-	

Legenda:

- 1. Botão Senha | Comandos Avançados: Botão para habilitar o local de envio dos comandos específicos.
- 2. Campo de input: Local para ser inserido o comando AT.
- 3. Botão Enviar: Botão para enviar o comando AT.

Portanto, sempre que for enviado um comando específico para o DTN-300, deverão ser aplicados os procedimentos descritos a seguir:

- a. Clicar no botão "Senhas | Comandos avançados".
- **b**. Inserir o comando AT corretamente no "Campo de input".
- c. Clicar no botão "Enviar".

4. Protocolo de Envio e Formato de Dados

Para atender aos diferentes servidores, o DTN-300 oferece suporte para vários formatos de carga útil (payload) e protocolo de envío. Os formatos de carga útil são:

FORMATO 5 - JSON (Tipo = 5) FORMATO 0 - HEX (Tipo = 0)

E o usuário pode usar os seguintes protocolos de envio:

O protocolo de envio e o formato da carga útil devem ser configurados através do botão Protocolo de Transporte e Formato ou do comando avançado AT+PRO. A estrutura da configuração através do botão é a mesma do comando AT+PRO, sendo ela:

\rightarrow AT+PRO=2,0	// Conexão UDP e payload HEX
\rightarrow AT+PRO=2,5	// Conexão UDP e payload JSON
\rightarrow AT+PRO=3,0	// Conexão MQTT e payload HEX
\rightarrow AT+PRO=3,5	// Conexão MQTT e payload JSON
\rightarrow AT+PRO=4,0	// Conexão TCP e payload HEX
\rightarrow AT+PRO=4,5	// Conexão TCP e payload JSON

No aplicativo, as mesmas configurações mostradas anteriormente, podem ser aplicadas da seguinte forma:

[60718]Opened the MQTT client network successfully [64276]Successfully connected to the server [67870]Upload data successfully [7409]Subscribe to topic successfully [74954]Close the port successfully [75993]Send complete
3,5 🔊 2
Role para baixo para ver mais comandos Protocolo de transporte e formato
Fechar Enviar

O aplicativo é utilizado apenas para configurar o dispositivo.

4.1. Formato Json

O DTN-300 suporta o formato JSON (JavaScript Object Notation), uma estrutura de dados leve, ideal para armazenar e transmitir informações de forma organizada e legível.

Utilizando pares "chave: valor" e listas ordenadas, o formato JSON facilita o intercâmbio de dados entre sistemas e é amplamente usado em APIs e aplicações web pela sua simplicidade e compatibilidade com várias linguagens de programação.

O formato JSON Geral é observado a seguir:

{
"IMEI": "863663062798914",
"IMSI": "472440000507321",
"Model": "CPL03-NB",
"work mode":2,
"calc flag":0,
"count_mode":0,
"tdc send flag":1,
"count time1":0,
"count time2":0,
"count time3":0,
"battery":3.24,
"signal":14,
"time":"2024/11/20 06:04:29",
"1":[0,0,16319072,200,300,"2024/11/20 02:03:04"],
"2":[0,0,16253640,200,300,"2024/11/14 10:00:21"],
"3":[0,0,16253640,200,300,"2024/11/14 09:59:21"],
"4":[0,0,16253637,200,300,"2024/11/14 09:58:21"],
"5":[0,0,16253650,200,300,"2024/11/14 09:57:21"],
"6":[0,0,16188111,200,300,"2024/11/14 09:56:21"],
"7":[0,0,16253636,200,300,"2024/11/14 09:55:21"],
"8":[0,0,16319167,200,300,"2024/11/14 09:54:21"]
}

TDC send flag:

Quando a flag é 1, isso significa que os pacotes são enviados em intervalos de tempo normais. Caso contrário, o pacote é enviado em um momento que não segue o intervalo definido pelo TDC.

Calculate Flag:

A calculate flag (flag de cálculo) é um campo definido pelo usuário. Um servidor IoT pode usar esse campo para lidar com diferentes medidores que possuem diferentes fatores de pulso. Por exemplo:

Se existirem 100 medidores de água: Medidores de 1 a 50: 1 litro/pulso Medidores de 51 a 100: 1,5 litros/pulso

O usuário pode configurar a flag de cálculo como 1 para os medidores de 1 a 50 e 2 para os medidores de 51 a 100. Assim, o servidor IoT pode usar esse campo para realizar os cálculos apropriados.

Valor padrão: 0

Faixa de valores (3 bits): de (b)000 a (b)111 (valores binários que correspondem de 0-7 em decimal).

Count time 1:

Informa a contagem dos pulsos lidos pelo pino PA8.

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

Count time 2:

Informa a contagem dos pulsos lidos pelo pino PA4.

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

Count time 3:

Informa a contagem dos pulsos lidos pelo pino PB15.

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

4.2. Formato HEX

No formato HEX, os dados são codificados em hexadecimal, representando cada byte em dois caracteres hexadecimais. Esse formato é eficiente para transmissões compactas de dados, sendo adequado para sistemas com restrições de largura de banda e processamento.Os oitos primeiros Bytes representam o IMEI do equipamento. Após isso cada par de caracteres representa um valor de byte em formato binário simplificado, facilitando a transmissão e o armazenamento com menor ocupação de espaço comparado ao formato de texto.

O formato HEX é indicado a seguir.

f863663062798914f46008351350731413820ca312180000000000000000673d5ea500f902600000c8 00012c673d435800f802c80000c800012c6735ca3500f802c80000c800012c6735c9f900f802c50000c80 0012c6735c9bd00f802d20000c800012c6735c98100f702cf0000c800012c6735c94500f802c40000c800 012c6735c90900f902bf0000c800012c6735c8cd

f863663062798914	f460083513507314	1382	0ca3	18
f+IMEI	f+IMSI	Versão	Bateria	Sinal
8 Bytes	8 Bytes	2 Bytes	2 Bytes	1 Byte

000000	000000	000000	00 f90260 0000c8 00012c 673d4358
Contador 1	Contador 2	Contador 3	res Cont1 Cont2 Cont3 Timestamp
3 Byte	3 Byte	3 Bytes	8 Bytes

00 f802c8 0000c8 00012c 6735ca35	00 f802c8 0000c8 00012c 6735c9f9	00 f802c5 0000c8 00012c 6735c9bd
segunda medição mais recente	terceira medição mais recente	quarta medição mais recente
8 Bytes	8 Bytes	8 Bytes

00 f802d2 0000c8 00012c 6735c981	00 f702cf 0000c8 00012c 6735c945	00 f802c4 0000c8 00012c 6735c909	00 f902bf 0000c8 00012c 6735c8cd
quinta medição mais recente	sexta medição mais recente	sétima medição	oitava medição
8 Bytes	8 Bytes	8 Bytes	8 Bytes

Versão:

Esses bytes incluem informações sobre a versão de hardware e software.

- Byte mais significativo : Especifica o modelo do sensor. Exemplo: 0x00 para DTN-300.
- Byte menos significativo: Especifica a versão do software. Exemplo: 0x82 = 130, o que indica versão de firmware 1.3.0.

BAT (Informação da Bateria): **Exemplo**: 0x0CA5 = 3237 mV

Intensidade do Sinal:

Intensidade do sinal na rede NB-IoT.

Exemplo: 0x12 = 18

Valores:

- 0-113 dBm ou menos
- 1-111 dBm
- 2-30 -109 dBm a -53 dBm
- 31 -51 dBm ou maior
- 99 desconhecido ou indetectável

Contador 1:

Informa a contagem dos pulsos lidos pelo pino PA8

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

Contador 2:

Informa a contagem dos pulsos lidos pelo pino PA4

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

Contador 3:

Informa a contagem dos pulsos lidos pelo pino PB15

- Faixa de valores (3 bytes): 0x000000 a 0xFFFFF
- Máximo permitido: 16.777.215 contagens
- Se esse valor máximo for excedido, o contador será reiniciado para 1.

TimeStamp:

Exemplo de TimeStamp: 64d49439(H) = 1691653177(D)

Insira o valor decimal em epochconverter.com para obter o horário exato.

5. Conectar na NB-IoT

5.1. Como funciona

O DTN-300 é equipado com um módulo NB-IoT, e o firmware pré-carregado no DTN-300 coleta dados ambientais dos sensores e envia esses valores para a rede NB-IoT local por meio do módulo NB-IoT. A rede NB-IoT encaminhará esses valores para o servidor IoT através do protocolo definido pelo DTN-300.

Um exemplo da estrutura da rede é ilustrada na imagem a seguir:

5.2. Conectando a rede NB-IoT

Com o chip já inserido no módulo, vamos remover e colocar o Jumper de Power novamente. O dispositivo deixará o Bluetooth ativo durante 60 segundos para a configuração via BLE, como vimos na etapa anterior.

Paras a configuração da rede, deve-se realizar o seguintes comandos:

Para otimizar o tempo de conexão, é importante selecionar a banda de frequência mais adequada para o funcionamento do equipamento, considerando fatores como a região e a rede disponível. "AT+QBAND=2,3,28".

Após a conexão ser bem-sucedida, o usuário pode usar AT+QENG=0 para verificar qual banda está realmente em uso.

6. Conectar em diferentes servidores

6.1. Configurar em MQTT

AT+PRO=3,0 // Define o u	so do protocolo MQTT para uplink e o formato do uplink para hexadecimal
AT+SERVADDR=120.26.8.126,1883	// Define o endereço do servidor MQTT e a porta (neste caso, 1883).
AT+CLIENT= <identificador unico=""></identificador>	// Configura o identificador de CLIENTE (Client ID) do MQTT.
AT+UNAME= <usuario></usuario>	// Configura o nome de usuário do MQTT para autenticação.
AT+PWD= <senha></senha>	// Define a senha do MQTT para autenticação.
AT+PUBTOPIC= <topico uplink=""></topico>	// Define o tópico de publicação (envio) para o MQTT.
AT+SUBTOPIC= <topico dowlink=""></topico>	// Define o tópico de assinatura (recepção) para o MQTT.

6.2. Configurando para UDP

AT+PRO=2,0 // Define o uso do protocolo MQTT para uplink e o formato do uplink para hexadecimal. AT+SERVADDR=120.24.4.116,5601 // Define o endereço do servidor UDP e a porta (neste caso, 5601).

6.3. Configurando para TCP

AT+PRO=4,1 // Define o uso do protocolo TCP para uplink, com formato de carga JSON. AT+SERVADDR=120.24.4.116,5600 // Define o endereço do servidor TCP e a porta (neste caso, 5600).

6.4. Comando de Downlink

Para realizar comandos via downlink ao DTN-300 Contador é preciso levar em consideração a janela de recepção que o dispositivo irá ficar disponível para receber o downlink. Para esse modelo, ao realizar um uplink, a janela de recepção de dados fica aberta durante 3 segundos.

6.4.1. Comando de Downlink via MQTT

6.4.1.1. Formato Hexadecimal

No formato hexadecimal do MQTT, somente alguns comandos são compatíveis, pois muitos comandos exigem suporte a strings. Os comandos disponíveis para o formato hexadecimal no MQTT seguem o mesmo padrão dos comandos em hexadecimal usados no NB-IoT. Veja o "apêndice" de comandos Downlink ao final do manual.

6.4.1.2. Formato JSON

No modo MQTT com formato JSON, é preciso configurar todos os comandos para garantir o funcionamento correto. Se precisar ajustar alguma configuração específica, aplique o modelo fornecido a seguir para realizar as modificações necessárias.

{ "AT+SERVADDR":"119.91.62.30,1882", "AT+CLIENT":"JwcXKjQBNhQ2JykDDAA5Ahs", "AT+UNAME":"usuariokhomp", "AT+PWD":"senhakhomp", "AT+PUBTOPIC":"teste/uplink", "AT+SUBTOPIC":"teste/downlink", "AT+TDC":"7200",
}

6.4.2. Comando de Downlink via UDP

O comando de downlink segue o mesmo formato dos comandos AT, porém deve ser envolvido por chaves { } para ser aceito. Por exemplo, para definir o tempo de transmissão para 300 segundos, aplique o comando a seguir:

{AT+TDC=300}

6.4.3. Comando de Downlink via TCP

O comando de downlink segue o mesmo formato dos comandos AT, porém deve ser envolvido por chaves { } para ser aceito. Por exemplo, para definir o tempo de transmissão para 300 segundos, aplique o comando a seguir:

{AT+TDC=300}

7. Comandos especiais do DTN-300

7.1. Intervalo de uplink

Esse comando permite definir o intervalo de tempo para envio dos dados. Por padrão, o sensor enviará transmissões (uplinks) a cada 2 horas.

O usuário pode usar os seguintes comandos para alterar o intervalo de uplink

```
AT+TDC=7200
```

→ Define o intervalo de atualização para 7200 segundos.

Além disso, o usuário pode pressionar o botão por 3 segundos para ativar uma transmissão manualmente.

7.2. Borda de leitura

Define em qual borda será feito a contagem do pulso. O exemplo a seguir é o comando genérico, no lugar 'x' coloque o número do contador (PA8 = 1, PA4 = 2, PB15 = 3).

AT+TTRMODx=0 \rightarrow Define a contagem para a borda de descida (padrão).

7.3. Modo de contagem

Define qual será o modo de contagem para os leitores de pulsos.

AT+COUNTMOD=0 \rightarrow Contagem acumulativa, acumulando até chegar ao valor máximo.

 \rightarrow Reseta a contagem a cada uplink enviado.

7.4. Define valor do contador

Define o valor do contador manualmente. O primeiro parâmetro é o número do contador (PA8 = 1, PA4 = 2, PB15 = 3), e o segundo parâmetro é o valor a ser atribuído ao contador.

AT+SETCNT=1,100
AT+SETCNT=2,344

AT+COUNTMOD=1

 \rightarrow Define contador 1 para 100.

 \rightarrow Define contador 2 para 344.

AT+SETCNT=3,0

 \rightarrow Define contador 3 para 0.

7.5.Limpa todos os contadores

Esse comando limpa todos os contadores, fazendo que todos voltem ao valor inicial de contagem

- 0.
- AT+CLRC

→ Todos os contadores são zerados.

7.6. Flag de cálculo

Define o valor da flag de cálculo. Os valores possíveis vão de 0 a 7.

AT+CALCFLAG=0 \rightarrow Define a flag de cálculo para 0.

AT+CALCFLAG=2 \rightarrow Define a flag de cálculo para 2.

8. Comandos AT

DESCRIÇÃO DO COMANDO	EXEMPLO DE COMANDO	EXEMPLO DE RESPOSTA
Exibir as configurações gerais.	AT+CFG	Será exibido uma lista com as configurações do endpoint, por exemplo: AT+MODEL=PS-NB,v1.2.4 AT+CFGMOD=1 AT+DEUI=863663062782884 AT+PWORD=****** AT+SERVADDR=NULL AT+SERVADDR=NULL AT+CLIENT=863663062782884 AT+UNAME=NULL AT+CLIENT=863663062782884 AT+UNAME=NULL AT+PWD=NULL AT+PWD=NULL AT+PWD=NULL AT+PUBTOPIC=NULL AT+SUBTOPIC=NULL AT+SUBTOPIC=NULL AT+TDC=7200 AT+INTMOD=0 AT+APN=If.br AT+PRO=3,5 OK
Configurar ou exibir o endereço do servidor.	AT+SERVADDR	ОК

"AT=CFG" Este comando exibe todas as configurações, a tabela é apenas para fins demonstrativos.

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Reinicia o dispositivo.	AT+ATZ	
Obter o intervalo atual de uplink. OBS: O intervalo é dado em milisegundos, ou seja, 10000 = 10000 / 1000 = 10s.	AT+TDC=?	30000 OK
Define o intervalo de uplink do endpoint.	AT+TDC=60000	
OBS 1: O intervalo deverá ser definido em milissegundos. OBS 2: O menor valor possível é 6000 = 6s.	OBS: 60000 = 60s	ок
Configura os diferentes requisitos de servidor. Mais informações no subtítulo 4	AT+PRO	ок
Exibe ou configura o servidor DNS	AT+DNSCFG	ОК

8.1. Data Logger

DESCRIÇÃO DO COMANDO	EXEMPLO DE COMANDO	EXEMPLO DE RESPOSTA
a . 0 ou 1 habilita ou desabilita a função	AT+CLOCKLOG=a,b,c,d	
b . Especifica o tempo das amostras em segundos.	AT+CLOCKLOG=1,65535,1 5,8	
 c. Especifique o intervalo de tempo para a realização das medições do sensor. 		ОК
d. Quantidade de medições que serão enviada junto ao Uplink.		

"AT+CLOCKLOG=1,65535,0,0" Desativa a gravação dos dados. Se o parâmetro 'b' estiver definido como 65535, o dispositivo iniciará a gravação dos dados após o acesso ao servidor.

8.2. Consultando os dados salvos

DESCRIÇÃO DO COMANDO	EXEMPLO DE COMANDO	EXEMPLO DE RESPOSTA
Exibe o histórico salvo, registra até 32	AT+CDP	ОК
grupos de dados.	AT+CDP=0	ОК

8.3. Comandos MQTT

DESCRIÇÃO DO COMANDO	EXEMPLO DO COMANDO	EXEMPLO DE RESPOSTA
Configura ou exibe o nome em que o dispositivo aparecerá no broker.	AT+CLIENT	ок
Configura ou exibe o usuário que irá acessar o broker.	AT+UNAME	ок
Configura ou exibe a senha que o dispositivo irá acessar o servidor.	AT+PWD	ок
Configura ou exibe o tópico de publicação MQTT.	AT+PUBTOPIC	ОК
Configura ou exibe o inscrição MQTT.	AT+SUBTOPIC	ОК

9. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

1. No site da Khomp, acesse o menu "Suporte Técnico" \rightarrow "Área restrita".

- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- 4. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.

5. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.

6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- 1. Acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- **3**. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com, pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento não tem direito a proteção contra interferência prejudicial e não pode causar interferências em sistemas devidamente autorizados.
- Este equipamento não é apropriado para uso em ambientes domésticos, pois poderá causar interferências eletromagnéticas que obrigam o usuário a tomar medidas para minimizar estas interferências.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

Rua Joe Collaço, 253 - Florianópolis, SC +55 (48) 3722.2930 +55 (48) 999825358 WhatsApp suporte.iot@khomp.com