

Manual do usuário DTL-300 Vazamento por Contato

ENABLING TECHNOLOGY

Khomp - Todos os direitos reservados

Índice

1. Introdução	página 3
1.1. O que é sensor analógico LoRaWAN DTL-300 Vazamento por Contato?	página 3
1.2. Especificações técnicas	página 4
1.3. Recursos	página 5
1.4. Especificações do Sensor de Vazamento por Contato	página 5
1.5. Modo de suspensão e modo de trabalho	página 5
1.6. LEDs e botões	página 6
1.7. Conexões internas	página 7
1.8. Dimensões	página 9
2. Procedimentos de utilização	página 11
2.1. Como funciona	página 11
2.2. Exemplo de conexão com a rede LoRa	página 11
2.3. Informações de Uplink	página 20
2.3.1. Uplink \rightarrow Status do dispositivo (FPORT=5)	página 20
2.3.2. Configuração do Sensor (FPORT=4)	página 20
2.3.3. Status em Tempo Real de Abertura e Fechamento (FPORT=2)	página 21
2.3.4. Histórico de Eventos (FPORT=3)	página 22
2.4. Decodificador	página 23
2.5. Unix TimeStamp	página 23
3. Comandos Downlink de Configuração	página 24
3.1. Configuração do Intervalo TDC	página 24
3.2. Receber o Estado do Dispositivo	página 24
3.3. Habilitar ou Desabilitar o Alarme	página 24
3.4. Configurar o TimeStamp do Dispositivo	página 24
3.5. Configurar a Sincronia de Tempo	página 25
3.6. Contagem Total de Vazamentos	página 25
3.7. Configurar um Uplink Confirmado	página 25
3.8. Tempo de atraso para que as mudanças de estado entrem em vigor	página 25
3.9. Limpar a contagem de Vazamentos e a Duração	página 25
3.10. Pré-configurar um Valor para a Quantidade de Vazamentos	página 26
4. Obter acesso à documentação adicional	página 26

1. Introdução

1.1. O que é sensor analógico LoRaWAN DTL-300 Vazamento por Contato?

O DTL-300 Vazamento por Contato constata o vazamento de líquidos, indica o tempo que o sensor permanece acionado devido ao vazamento, conta quantas vezes o sensor foi acionado e, em seguida, transmite para o servidor IoT (por meio do protocolo sem fio LoRaWAN).

O DTL-300 Vazamento por Contato envia dados periodicamente e para cada ação do sensor de contato. O equipamento também conta os tempos de acionamento do sensor e calcula a duração do último acionamento.

O DTL-300 Vazamento por Contato também suporta o recurso Datalog, salva os dados quando não há rede LoRa e faz uplink quando a rede estiver disponível.

Cada DTL-300 Vazamento por Contato é pré-carregado com um conjunto de chaves exclusivas para registros LoRaWAN. Registre as chaves exclusivas no servidor LoRaWAN local e o sistema se conectará automaticamente na rede quando o equipamento for ligado.

1. Se o ambiente local tiver cobertura de serviço LoRaWAN, o módulo pode ser instalado e configurado para se conectar ao provedor LoRaWAN via wireless.

2. O controlador pode ser configurado para se conectar ao gateway LoRaWAN via wireless.

1.2. Especificações técnicas

Físico e Ambiental

Bateria

- Bateria Li/SOCI2 não recarregável
- Capacidade: 8500 mAh
- Autodescarga: <1% / Ano à +25 °C
- Corrente máxima contínua: 130 mA
- Corrente máxima de reforço: 2 A, 1 segundo

Condição operacional

- Temperatura de armazenamento: -40 °C até +85 °C
- Temperatura de operação: -40 °C até +85 °C
- Tensão de Alimentação: 2,5 ~ 3,6 V

Peso e dimensões

- Dimensões do equipamento: 124x65x47 mm
- Peso líquido: 187 g
- Peso bruto: 300 g

Consumo de energia

- Modo de suspensão: 5 μA @ 3,3 v
- Modo de transmissão LoRa:
- 125 mA à 20 dBm
- 82 mA à 14 dBm

Especificações LoRa

- Faixa de frequência, banda 1(HF): 862-1020 MHz
- Saída RF constante máxima: +22 dBM
- Sensibilidade RX: até -139 dBm
- Excelente imunidade contra bloqueios de sinal

Banda de frequência

• AU915

Garantias e certificações

- Garantia total (legal + garantia Khomp): 1 ano
 - Garantia legal: 90 dias
 - Garantia Khomp: 9 meses
- Certificação Anatel
- Indústria certificada ISO 9001

1.3. Recursos

- LoRaWAN 1.0.3 classe A.
- Baixo consumo de energia.
- Sensor de vazamento por contato.
- Banda de frequência: AU915.
- Bateria LI/SOCI2 de 8500 mAh.
- Datalog.
- Duração dos vazamentos.

1.4. Especificações do Sensor de Vazamento por Contato

- Corpo do sensor em ABS.
- Ponta de contato com o líquido em aço inoxidável.
- Comprimento do cabo: 1 metro.
- Temperatura de operação: -10 °C a +60 °C (sem condensação)
- Dimensões: 58x20x12 mm

1.5. Modo de suspensão e modo de trabalho

- Modo de suspensão profunda: Neste modo, o equipamento possui o funcionamento normal de um dispositivo LoRa. Ele irá ingressar na rede LoRa e enviará dados ao concentrador (gateway). Periodicamente, entre cada amostragem, o dispositivo entrará no modo IDLE. No modo IDLE, ele terá o mesmo consumo de energia que no modo de suspensão.
- Modo de trabalho: Neste modo, o dispositivo não possui nenhuma atividade LoRaWAN. Este modo é utilizado para economizar e otimizar a vida útil da bateria.

1.6. LEDs e botões

Ações no botão ACT	Funções	Ações
Pressionar o botão ACT de 1 segundo a 3 segundos	Enviar um uplink	Se o sensor já estiver conectado à rede LoRa, o sensor enviará um pacote de uplink, o LED pisca azul uma vez. Enquanto isso, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o dispositivo.
Pressionar o botão ACT por mais de 3 segundos	Dispositivo ativado	O LED pisca verde rapidamente 5 vezes, o dispositivo entrará no modo OTA por 3 segundos. Em seguida, ENTRA na rede LoRa. O LED acende verde continuamente por 5 segundos após entrar na rede. Assim que o sensor estiver ativo, o módulo Bluetooth estará ativo e o usuário poderá se conectar via Bluetooth para configurar o equipamento, independentemente de o dispositivo ingressar ou não na rede LoRa.
Pressionar o botão ACT rapidamente 5 vezes	Dispositivo desativado	O LED ficará aceso na cor vermelho por 5 segundos. Significa que o DTL-300 está no modo de suspensão profunda.

1.7. Conexões internas

Legenda: Interior do DTL-300 Vazamento por Contato com indicações dos conectores internos.

Barramento	Funções						
VDD Pino 1	Saída de tensão da Bateria. Utilizada para alimentar o módulo que faz a leitura de corrente dos sensores.						
PA8 Pino 9	Pino de conexão digital para o sensor de vazamento por contato .						
GND Pino 11	GND (terra) → ponto de referência comum. Serve como ponto de referência para as tensões e caminho de retorno para a corrente elétrica						
	Funções						
Interface UART	Funções						
Interface UART	Funções GND (terra) → ponto de referência comum. Serve como ponto de referência para as tensões e caminho de retorno para a corrente elétrica.						
Interface UART GND UART TX	Funções GND (terra) → ponto de referência comum. Serve como ponto de referência para as tensões e caminho de retorno para a corrente elétrica. Transmissão e recepção de dados via comunicação serial UART (Universal Asynchronous						

Switch 1	Funções
FLASH	Posição da chave para que o dispositivo opere como esperado. Habilita o modo de operação normal. A chave não deve ser mudada para o modo ISP.
Outras Conexões	Funções
Botão de Reset	Botão de reset. Utilizado para reiniciar rapidamente o dispositivo.
Jumper da Bateria	Jumper de alimentação da placa. Fecha um curto que permite a passagem de corrente da bateria para a placa. Caso seja retirado, a bateria ficará em aberto e o dispositivo ficará desligado.
LED	LED indicador de funcionamento. Utilizado como indicação visual do funcionamento do dispositivo. Para mais informações, consultar o tópico Leds e Botões.

1.8. Dimensões

Legenda: Dimensões na parte frontal do DTL-300 Vazamento por Contato.

Legenda: Dimensões na parte lateral do DTL-300 Vazamento por Contato.

Legenda: Dimensões na parte traseira do DTL-300 Vazamento por Contato.

2. Procedimentos de utilização

2.1. Como funciona

Por padrão, o DTL-300 com sensor de vazamento por contato é configurado como modo LoRaWAN OTAA Classe A. Para conectar uma rede LoRa local, o usuário só precisa inserir as chaves OTAA no servidor de rede, ligar o DTL-300 e pressionar o botão por mais de 3 segundos para que o dispositivo entre na rede. O LED mostrará o status de ingresso: Depois de ligar, o LED ficará aceso na cor verde por 5 segundos após entrar na rede. Quando houver mensagem do servidor, o LED ficará aceso na cor azul por 1 segundo.

2.2. Exemplo de conexão com a rede LoRa

Este tópico mostra um exemplo de como ingressar o endpoint DTL-300 na rede LoRa. A seguir, está a estrutura da rede usada com o gateway LoRaWAN DTG-184.

Por padrão, os endpoints estão configurados no modo OTA. Isso implica que cada dispositivo possui um par específico de chaves (OTA keys) e essas chaves devem ser utilizadas para ingressar o equipamento na rede LoRa.

Por padrão, as chaves OTA de cada dispositivo já estão configuradas no endpoint. Basta adicioná-las ao servidor e após, ligar o endpoint para que ele inicie o processo de adesão à rede.

As chaves de ativação OTA de cada endpoint, estão localizadas na etiqueta dentro da caixa do equipamento.. Nesta etiqueta também se encontram algumas outras chaves privadas para este endpoint.

Abra a caixa e observe a etiqueta no lado interno da tampa (na embalagem).

Um exemplo de onde localizar a etiqueta com as chaves do DTL-300 Vazamento por Contato é observado a seguir:

Indicamos uma imagem de exemplo para a etiqueta, a seguir:

(j) Nota

Alguns números foram ocultados por questões de privacidade e segurança.

Após localizar as chaves do dispositivo, acesse a Interface Web do Network Server (NS), como por exemplo o ChirpStack, e use as suas credenciais para realizar o login.

* Lloor	nama / amaile	
* Oser		
	* Password :	ø

- Na aba lateral do menu, localize e clique na opção Gateways.
- Na seção de Gateways é possível verificar a lista com todos os concentradores que foram adicionados. Verifique se o utilizado para a comunicação está com o status "online" e verifique também a última vez em que teve uma troca de informações, no parâmetro "last seen".
- Um exemplo para verificar essas informações pode ser observado a seguir:

ChirpStack			Search			Q? A admin v
ChirpStack V	Tenants / ChirpStack Gateways	k / Gateways				Add gateway Selected gateways
② Dashboard ③ Tenants	Ū.	Last seen	Gateway ID	Name	Region ID	Region common-name
A Users	 Online 	2024-08-15 15:46:00	a84041fdfe240753	DTG-i84-240753	au915_0	AU915
🔎 API Keys						< 1 > 10 / page V
Device Profile Templates						
Regions						
☆ Tenant						
🙆 Dashboard						
A Users						
🔎 API Keys						
E Device Profiles						
🗟 Gateways						
Applications						

- Após verificar que está tudo certo com o gateway, adicione um perfil para o dispositivo.
 - No menu lateral da Interface Web, localize e clique na opção "Device Profiles".
 - Na interface "Device Profiles", clique no botão "Add device profile".

ChirpStack		Search Q ? A admin v
ChirpStack V	Tenants / ChirpStack / Device profiles Device profiles	Add device profile
 Dashboard Tenants Users API Keys Device Profile Templates Regions 		< 1 > 10/page >
Contenant		
 ♀ Destructoria ♀ API Keys ♥ Device Profiles ♥ Gateways 		
Applications		

Para adicionar o perfil do dispositivo, é necessário configurar algumas informações obrigatórias, são elas:

- Name: Nome descritivo para o perfil do dispositivo.
- **Region**: Região geográfica onde o dispositivo opera, o que define a banda de frequência que será usada. Para o Brasil, a AU915 é a faixa de frequência regulamentada pela ANATEL.
- MAC version: Versão do protocolo MAC (Medium Access Control) que o dispositivo usa. Esta informação é encontrada no manual do equipamento.
- **Regional parameters version**: Revisão dos parâmetros regionais suportados pelo dispositivo. Esta informação é encontrada no manual do equipamento.
- **ADR algorithm**: Algoritmo utilizado para Adaptive Data Rate (ADR).
- Expected uplink interval (secs): Intervalo de tempo esperado entre uplinks (transmissões de dados do dispositivo para a rede).

 i Nota decoder para os dados, por exemplo). Essas configurações não são "obrigatórias" para a criação do perfil. A explicação de cada parâmetro pode ser encontrada na documentação oficial do ChirpStack.
--

Para o nosso exemplo, as informações serão preenchidas com:

- Name: Perfil_DTL-300_RL
- Region: AU915
- MAC version: LoRaWAN 1.0.3
- Regional parameters version: A
- ADR algorithm: Default ADR algorithm (LoRa only)
- Expected uplink interval (secs): 3600

()	Nota	 Informações de "MAC version" e "Regional parameters version" podem ser encontradas facilmente no manual do endpoint. Para as configurações de "ADR algorithm" e "uplink interval", utilize o padrão.
-----------	------	---

General	Join (OTAA / ABP)	Class-B	Class-C	Codec	Relay	Tags	Measurements		Select device-profile template	
* Name Perfil_D1	[L-300_RL									
Descriptio	n									
* Region								Region configuration ③		1
AU915								AU915 (channels 0-7 + 64)		I
* MAC ver	rsion ③							* Regional parameters revision ③		I
LoRaWA	N 1.0.3							A		I
* ADR alg	orithm									I
Default.	ADR algorithm (LoRa o	nly)							×)	
Flush que	ue on activate 💿					* Expec	ted uplink interval (secs) ③	Device-status request frequency (req/day)	0	I
						3600		1		I
Submit										I

- Após configurar o perfil do dispositivo, clique no botão "Submit".
- Após adicionar um perfil do usuário, é necessário adicionar uma aplicação.
- Na aba lateral do menu, localize e clique na opção "Applications".
- Clique no botão "Add application".

ChirpStack		Search	۹ ?	R admin ∨
ChirpStack V	Tenants / ChirpStack / Applications Applications		I	Add application
 Dashboard Tenants Users API Keys Device Profile Templates Regions 			< 1 >	10 / page V
☆ Tenant				
 Dashboard Users API Keys Device Profiles Gateways Applications 				

- Na nova interface que será exibida, é necessário fornecer um nome para a aplicação.
- Após indicar o nome da aplicação, clique no botão "Submit".

Tenants / ChirpStack / Application Add application	is / Add		
* Name Sample_Application Description		 	
Submit			li di

- Após clicar em "Submit", será exibida a interface da sua aplicação.
- Na interface da aplicação que acaba de ser criada, clique em "Add Device".

Tenants / ChirpStack / Application	s / DTL-500-Application						
DTL-500-Application app	DTL-500-Application application id: f9ebea94-60c0-4c39-a655-cf3e6235f00e Delete application						
Devices Multicast groups	Relays Application configuration	Integrations					
		Add device Selected devices					
Last seen	DevEUI	Name Device profile Battery					
	No data						

Será necessário fornecer algumas informações para adicionar um usuário:

- Name: Nome descritivo e amigável para o dispositivo.
- Device EUI: Um identificador único de 64 bits (8 bytes) para o dispositivo. É um código hexadecimal que identifica exclusivamente cada dispositivo na rede LoRa.
- JOIN EUI: Também conhecido como AppEUI ou JoinEUI, é um identificador de 64 bits (8 bytes) usado para identificar a aplicação ou o serviço ao qual o dispositivo está tentando se conectar.
- Device Profile: Um conjunto de configurações que define o comportamento e as capacidades do dispositivo, como a frequência de transmissão, o tipo de mensagem e os parâmetros de comunicação. É o perfil do usuário que foi configurado anteriormente.

Após configurar corretamente, clique em "Submit". Um exemplo de configuração é observado a seguir:

Tenants / ChirpStack / Applications / DTL-500-Application / Add devia	ce					
Add device						
Device lags Variables						
* Name						
DTL-300_RL						
Description						
Description						
						h
* Device EUI (EUI64)				Join EUI (EUI64) 💿		
484041	MCD V	0	a	104041	MCD	0 1
A04041	M2B ~	C	0	M04041	IVI3D V	0 0
* Device profile						
Perfil_DTL-300_RL						
Device is disabled				Disable frame-counter validation (2)		
_						
Submit						

- Após clicar em submit, será necessário informar a "Application Key" do endpoint.
- A "App key" pode ser localizada na etiqueta interna da caixa do dispositivo, junto com as outras chaves do produto.
- Após inserir a "App Key", clique em "Submit" novamente.
- Um exemplo de configuração é observado a seguir:

Tenants / ChirpStack / Application	Tenants / ChirpStack / Applications / GW_Teste_Gabriel / Devices / DTL-485_TC1					
DTL-485_TC1 device eui: a84	DTL-485_TC1 device eui: a840414f61887cc1					
Dashboard Configuration ************************************	OTAA keys Activation Queue Events LoRaWAN frames	MSB V C O				

- Feito esse procedimento, as chaves OTA para ativação do endpoint foram inseridas no servidor de rede.
- O equipamento irá automaticamente enviar a solicitação de adesão à rede (JOIN Request) assim que o equipamento for ligado ou quando for pressionado o botão frontal do dispositivo por mais de 3 segundos.

Ao ligar o DTL-300 Vazamento por Contato ou quando o botão frontal for pressionado, o sistema inicia o processo de adesão à rede automaticamente.

O processo de adesão à rede pode levar cerca de 1 minuto para ser finalizado. **Por favor, aguarde**!

- Após concluir o processo, será possível verificar as mensagens enviadas pelo endpoint no ChirpStack.
- Acesse a aplicação onde foi adicionado o dispositivo e clique em "Dashboard".
- Um exemplo pode ser observado na imagem a seguir:
- No parâmetro "Last seen", é possível verificar a data e o horário da última comunicação do endpoint.
- No gráfico "Received", é possível verificar a quantidade de comunicações realizadas pelo endpoint.
- É possível visualizar outras opções sobre a comunicação nos diferentes gráficos e em outras seções da aplicação.

Dashboard Configuration OTAA keys	Activation Queue Events LoRaWAN frames	
Last seen: 2024-08-26 16:30:47 Description: teste para ver o payload	Device profile: DTL-500	Enabled: yes
Received	RSSI	24h 31d 1y C
40 35 30 25 20 15 10 0 5 0	0 -2 -4 -6 -8 -8 -10 -12 -12 -14 -14 -18 -18	

2.3. Informações de Uplink

Ao ingressar na rede LoRa, o dispositivo irá enviar periodicamente informações ao servidor (mesmo sem possuir um sensor conectado ao equipamento).

O processo de envio de informações do endpoint ao concentrador (gateway), é conhecido como uplink.

Por padrão, o envio de uplinks é aplicado a cada 12 horas (este intervalo pode ser alterado).

2.3.1. Uplink → Status do dispositivo (FPORT=5)

O usuário pode utilizar o comando downlink 0x26 01 através do network server, para que o dispositivo envie suas informações de configuração. O dispositivo enviará este uplink para o servidor através da Fport=5.

A carga útil do uplink pode ser conferida a seguir:

Tamanho (bytes)	1	2	1	1	2
Valor	Modelo do	Versão de	Banda de	Sub banda de	Bateria
	Sensor	Firmware	frequência	frequência	(mV)

2.3.2. Configuração do Sensor (FPORT=4)

O usuário pode utilizar o comando downlink 0x26 01 através do network server, para que o dispositivo envie suas informações de configuração. O dispositivo enviará este uplink para o servidor através da Fport=5.

A carga útil do uplink pode ser conferida a seguir:

Tamanho (bytes)	3	1	1	2	1
Valor	TDC (segundos)	Disalarm	Keep Status	Keep Time (segundos)	Alarme Tempo de Vazamento

TDC (Padrão 0x001c20):

Intervalo de envio dos uplinks do dispositivo, o valor configurado por padrão é 0x001C20, o valor convertido para decimal é igual a 7200 (segundos), que é equivalente a duas horas.

Disalarm (padrão 0):

- **Disalarm = 1**: O DTL-300 enviará uplinks periódicos conforme o tempo TDC configurado. Isso normalmente é usado para aplicação de medidor de pulso, nesta aplicação, há muitos eventos de vazamento/sem vazamento, e a plataforma se preocupa apenas com o número total de pulsos.
- Disalarm = 0: O DTL-300 enviará uplinks periódicos conforme o tempo TDC configurado e sempre que houver um evento de vazamento ou não vazamento. Este modo de operação é ideal quando a aplicação se preocupa que os alarmes de vazamento sejam em tempo real.

Caso ocorram muitos eventos de vazamento quando disalarm=0, haverá muitos uplinks e isso acarreta em um gasto maior da bateria.

- Keep Status e Keep Time: Mostra o valor configurado no Alarme baseado em tempo limite. É
 possível conferir mais sobre essa configuração no tópico (tópico da explicação).
- Tempo de Alarme de Vazamento: Envia um uplink confirmado periódico caso o vazamento não seja resolvido. O valor padrão é 0x0A, que equivale a 10 minutos.

2.3.3. Status em Tempo Real de Abertura e Fechamento (FPORT=2)

Sempre que houver um evento de vazamento ou não houver mais vazamento o dispositivo enviará um uplink.

O pacote dos uplinks de eventos em tempo real pode ser conferido a seguir:

Tamanho (bytes)	1	3	3	4
Valor	Estado e Alarme	Total de Eventos de Vazamento	Duração do último vazamento (segundos)	TimeStamp

(Tamanho total do pacote de uplink: 11 Bytes)

O Byte de Estado e Alarme está dividido da seguinte forma:

Tamanho (bit)	bit7:bit4	bit3	bit2	bit1	bit0
Valor	Reservado	Modo de Contagem	Flag TDC	Alarme	Estado

- Reservado: Bits não usados e que não afetam como deve ser avaliado o uplink ou o comportamento do dispositivo.
- Modo de Contagem: Caso o bit3 para o Modo de Contagem seja igual a 0, então o dispositivo irá informar a quantidade total de vazamentos desde que ele entrou em funcionamento. Caso o bit3 seja igual 1, então o dispositivo irá informar a quantidade total de vazamentos desde o último uplink na FPORT=2.
- Flag TDC: Quando a Flag TDC é igual a 1, indica que o dispositivo está enviando pacotes no intervalo TDC configurado. Caso seja diferente de 1, significa que é um pacote enviado fora do intervalo TDC, ou seja um uplink de alarme.
- Alarme: Para mais informações sobre o alarme, verifique o tópico: 3.3. Habilitar ou Desabilitar o Alarme.
- Estado: O estado indica quando há um vazamento ou não. Quando o bit0 é 1, o dispositivo está indicando um vazamento e quando o bit0 é igual a 0, o dispositivo está indicando que não há vazamentos.
- Total de Eventos de Vazamento: Contagem de pulsos baseados nos vazamentos. São utilizados 3 Bytes para esta contagem, isso significa que a contagem máxima de eventos é 16.777.215 (dezesseis milhões setecentos e setenta e sete mil duzentos e quinze) vazamentos. Caso o número de vazamentos ultrapasse essa quantidade, o dispositivo começará a contar novamente do 0.
- Duração do Último Vazamento: Quanto tempo em segundos durou o último evento de vazamento.
 Pode ser visualizado abaixo o sinal que o DTL-300 recebe quando há um vazamento:

22

2.3.4. Histórico de Eventos (FPORT=3)

O DTL-300 guarda um histórico com os valores do sensor de vazamento e é possível retornar esse histórico através de um comando downlink (0x31).

O histórico de valores pode incluir um ou múltiplas medições, o payload de cada medição é igual ao pacote de status em tempo real.

Tamanho (bytes)	1	3	3	4
Valor	Estado e Alarme	Total de Eventos de Vazamento	Duração do último vazamento (segundos)	TimeStamp

Neste caso, o Byte de Estado e Alarme estará dividido da seguinte forma:

Tamanho (bit)	bit7	bit6	bit5:bit4	bit3	bit2	bit1	bit0
Valor	Reservado	Flag do Histórico	Reservado	Modo de Contagem	Flag TDC	Alarme	Estado

Cada entrada de dados tem 11 Bytes assim como o status em tempo real. Portanto, para economizar bateria, o DTL-300 com Sensor de Vazamento por contato enviará o uplink com o máximo de Bytes de acordo com a banda de frequência e o Data Rate (DR) configurados.

- DR0: Máximo de 11 Bytes, então o DTL-300 fará uplink de apenas uma entrada de dados.
- DR1: Máximo de 53 Bytes, então o DTL-300 fará o uplink de 4 entradas de dados (totalizando 44 Bytes).
- DR2: Máximo de 11 Bytes, então apenas uma entrada de dados.
- DR3: Máximo de 22 Bytes, então o DTL-300 fará uplink de duas entradas de dados.

2.4. Decodificador

O decodificador para o DTL-300 com sensor de Vazamento por Contato pode ser encontrado no seguinte link:

https://github.com/support-khomp/iot-decoders/tree/main/Endpoints-Linha-DTL

2.5. Unix TimeStamp

O DTL-300 com Sensor de Vazamento por Contato utiliza o formato padrão TimeStamp.

Tamanho (Bytes)	4	1
Valor	Inteiro sem sinal de 32 bits: Segundos desde o marco 0	Inteiro sem sinal de 8 bits: Fração de Segundos com passos de 3 milésimos

3. Comandos Downlink de Configuração

Comandos downlink são instruções enviadas de um servidor para um dispositivo IoT, permitindo a configuração ou controle remoto. No caso de dispositivos LoRaWAN ou NB-IoT, esses comandos são codificados em formato hexadecimal, um sistema numérico que utiliza 16 símbolos (0-9 e A-F) para representar dados compactamente. O prefixo no comando serve para o dispositivo identificar rapidamente a instrução específica que deve ser executada ao recebê-lo.

A seguir, são mostrados diversos comandos Downlink úteis para configuração do DTL-300:

3.1. Configuração do Intervalo TDC

→ Configurar o Intervalo TDC (Prefixo 0x01):

0x01 aa bb cc

aa bb cc: Intervalo de tempo em segundos para o que o dispositivo envie automaticamente um uplink (intervalo TDC).

Exemplo:

01 00 1C 20

→ O dispositivo enviará um uplink a cada 7200 segundos (2h).

3.2. Receber o Estado do Dispositivo

→ Receber o Estado do Dispositivo (Prefixo 0x26):

0x26 01

 \rightarrow Pede para que o dispositivo mande através de um uplink as configurações de alarme e o estado.

3.3. Habilitar ou Desabilitar o Alarme

→ Habilitar ou Desabilitar o Alarme (Prefixo 0xA7):

0xA7 aa

aa: Use 01 para que o dispositivo só mande o uplink respeitando o intervalo TDC. Utilize 00 para que o dispositivo mande uplinks nos ntervalos e nas mudanças de estado do sensor de vazamento.

3.4. Configurar o TimeStamp do Dispositivo

→ Configurar o TimeStamp do Dispositivo (Prefixo 0x30):

0x30 aa bb cc dd ee

aa bb cc dd ee: Valor em segundos para o TimeStamp.

Exemplo:

30 60 07 80 60 00

→ Data configurada para: 2021-01-20 00:59:12

3.5. Configurar a Sincronia de Tempo

→ Configurar a Sincronia de Tempo (Prefixo 0x28):

0x28 aa bb

aa: Use 01 para habilitar a sincronia de tempo do fuso horário do sistema e 00 para desabilitar (por padrão esta função está desabilitada.
 bb: Região do fuso horário a ser configurada.

3.6. Contagem Total de Vazamentos

→ Configurar a Contagem Total de Vazamentos (Prefixo 0x0B):

0x0B aa

aa: Use 00 para habilitar a contagem padrão de eventos de vazamento desde a configuração de fábrica (modo padrão). Use 01 para habilitar a contagem desde o último uplink TDC, a cada uplink TDC ela é reiniciada e o dispositivo começa a contar novamente até o próximo uplink.

3.7. Configurar um Uplink Confirmado

→ Configurar a Sincronia de Tempo (Prefixo 0x0C):

aa: Intervalo de tempo em minutos para que o dispositivo envie um uplink caso o estado de vazamento não mude.

Exemplo:

0C 0A

 \rightarrow 0 dispositivo irá enviar um uplink confirmado a cada 10 minutos caso o evento de vazamento continue.

3.8. Tempo de atraso para que as mudanças de estado entrem em vigor

ightarrow Configurar o Tempo de Atraso das Mudanças de Estado (Prefixo 0x0D):

0x0D aa bb

aa: Ilntervalo de tempo em milisegundos para que o dispositivo considere uma mudança de estado válida.

Exemplo:

0D 00 32

→ Será um sinal válido de vazamento, caso o sinal dure mais que 50 ms.

3.9. Limpar a contagem de Vazamentos e a Duração

→ Limpar a Contagem de Vazamentos e a Duração (Prefixo 0xA6):

0xA6 01

→ O dispositivo irá limpar a contagem de vazamentos e a duração do último vazamento.

3.10. Pré-configurar um Valor para a Quantidade de Vazamentos

→ Pré-configurar um Valor para a Quantidade de Vazamentos (Prefixo 0xA5):

0xA5 aa bb cc aa bb cc: Valor da contagem a ser ajustado/pré-configurado.

Exemplo:

A5 00 00 64

 \rightarrow Ajusta a contagem de vazamentos para 100.

4. Obter acesso à documentação adicional

Você encontra o manual e outros documentos em nosso site, www.khomp.com. Veja a seguir como se cadastrar e acessar nossa documentação:

Para usuários que não possuem cadastro:

- 1. No site da Khomp, acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Clique em "Inscreva-se".
- 3. Escolha o perfil que melhor o descreve.
- 4. Cadastre seu endereço de e-mail. É necessário utilizar um e-mail corporativo.
- 5. Preencha o formulário que será enviado ao seu e-mail. Caso não tenha recebido em sua caixa de entrada, confira sua caixa de spam.
- 6. Siga os passos descritos a seguir para fazer login na área restrita.

Para usuários que possuem cadastro:

- 1. Acesse o menu "Suporte Técnico" → "Área restrita".
- 2. Faça login com seu endereço de e-mail e senha cadastrada.
- 3. Acesse a opção Documentos. Você será direcionado à Wiki da Khomp.

Você também pode entrar em contato com nosso suporte técnico através do e-mail suporte.iot@khomp.com, pelo telefone +55 (48) 37222930 ou WhatsApp +55 (48) 999825358.

"Incorpora produto homologado pela Anatel sob número 07517-22-03237"

- Este equipamento não tem direito a proteção contra interferência prejudicial e não pode causar interferências em sistemas devidamente autorizados.
- Este equipamento não é apropriado para uso em ambientes domésticos, pois poderá causar interferências eletromagnéticas que obrigam o usuário a tomar medidas para minimizar estas interferências.

Para informações do produto homologado, acesse o site: https://sistemas.anatel.gov.br/sch

Rua Joe Collaço, 253 - Florianópolis, SC +55 (48) 3722.2930 +55 (48) 999825358 WhatsApp suporte.iot@khomp.com