

Gateway IoT de ampla cobertura para ambiente interno

Principais características

- Duas portas 1-Wire para integração de sensores, como por exemplo, de temperatura ou contato seco
- Duas portas Ethernet que flexibiliza a comunicação com a rede local
- Módulo para comunicação sem fio com endpoints através do protocolo LoRaWAN
- Módulos 3G ou 4G para 2 SIM cards*

Aplicações

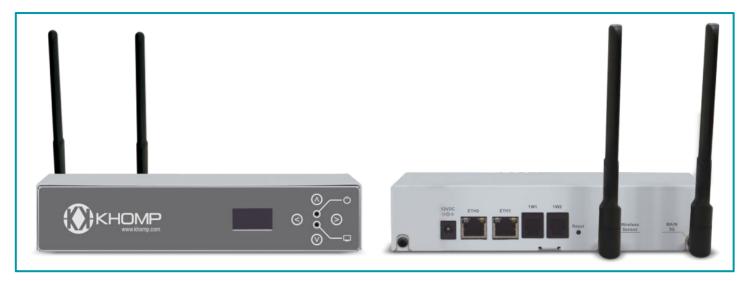
A linha de gateways ITG da Khomp, pode ser usada nos mais diferentes segmentos de mercado, como por exemplo, em projetos para:

- Hospitais e clínicas
- Agronegócio
- Indústrias
- Corporativos
- Flétrico
- Comercial

Visão geral

A linha de gateways ITG da Khomp foi desenvolvida para integrar as mais diferentes soluções IoT, atendendo necessidades e otimizando processos que até então eram inviáveis.

O ITG administra as informações de sensores conectados aos endpoints, na qual as transmite a um servidor externo do cliente, através do protocolo de integração seguro MQTT.


Estas informações podem ser usadas por aplicações variadas, desenvolvidas pelo cliente, permitindo criar as mais diversas plataformas de monitoramento.

A linha de gateways ITG possuem duas portas 1-Wire, possibilitando o uso integrado com sensores fornecidos pela Khomp (que suportam este tipo de conexão). O ITG pode ser conectado, por exemplo, com sensores de temperatura e dip switch, proporcionando o monitoramento da abertura de portas.

O gateway ITG 200 LoRa Indoor é um dispositivo com dimensões que favorecem sua instalação. Além disso, conta com display OLED de 4 botões, permitindo exibir e navegar por diferentes informações do sistema.

^{*} Itens opcionais acarretam custos adicionais. Os módulos podem ser adquiridos separadamente.

Imagens do produto

Visão frontal. Visão traseira.

Principais funcionalidades

- Acesso via Interface Web no idioma inglês ou português
- Fallback da rede local para o modem
- FailOver entre os SIM cards instalados
- Pode operar em 3G e 4G
- Buferização local de mensagens em eventuais falhas de rede ou durante a transição Ethernet/modem. A buferização local suporta até 500 mil mensagens
- Sincronização automática do relógio
- Atualização remota de versões (desde que o gateway tenha acesso à Cloud Khomp)
- Importação e exportação das configurações
- Dashboard que exibe as últimas mensagens recebidas
- Cliente OpenVpn
- DHCP
- Protocolo de integração seguro via MQTT

O principal objetivo do gateway ITG é receber as mensagens dos sensores dos endpoints (LoRa) e enviá-las a um servidor (Broker ou NetWork Server).

3G ou 4G para maior garantia no envio dos dados

A linha de gateways ITG permite que seja instalado um módulo 3G ou 4G, na qual aceita até dois Sim Cards de modo a prover um sistema de fallback. Este módulo aumenta a garantia na entrega das informações, criando um sistema com maior confiabilidade. A rede de dados móveis (3G ou 4G) num primeiro cenário, normalmente é usada quando a rede Ethernet estiver indisponível e uma segunda opção é usar o gateway desconectado de uma rede local, enviando os dados apenas via módulo 3G ou 4G (**item opcional**).

Comunicação sem fio

O módulo LoRa para comunicação sem fio com endpoints, provê uma alta escalabilidade ao gateway, possibilitando ampliar a quantidade de sensores de leitura e a área de monitoramento, como a instalação de sensores em locais distantes do gateway.

A Khomp disponibiliza o módulo LoRa para operar com o ITG 200 LoRa Indoor.

O módulo LoRa possibilita monitorar áreas mais extensas, na casa de alguns quilômetros em ambientes outdoor (dependendo da região). O módulo LoRa pode ter até 500 endpoints associados ao Network Server Interno do gateway ou um número ainda maior se o gateway for usado para enviar as mensagens para um Network Server Externo. Neste caso, essa quantidade depende da frequência de envio das mensagens pelos endpoints e pode chegar na casa de alguns milhares, dependendo da configuração da rede.

Diante destas informações, um possível cenário de uso, dentre tantos outros, é na indústria. Este cenário costuma possuir pontos de monitoramento em diferentes locais de uma mesma região, através do monitoramento da energia elétrica, temperatura e umidade (câmaras frias, por exemplo).

Configuração do SIM card

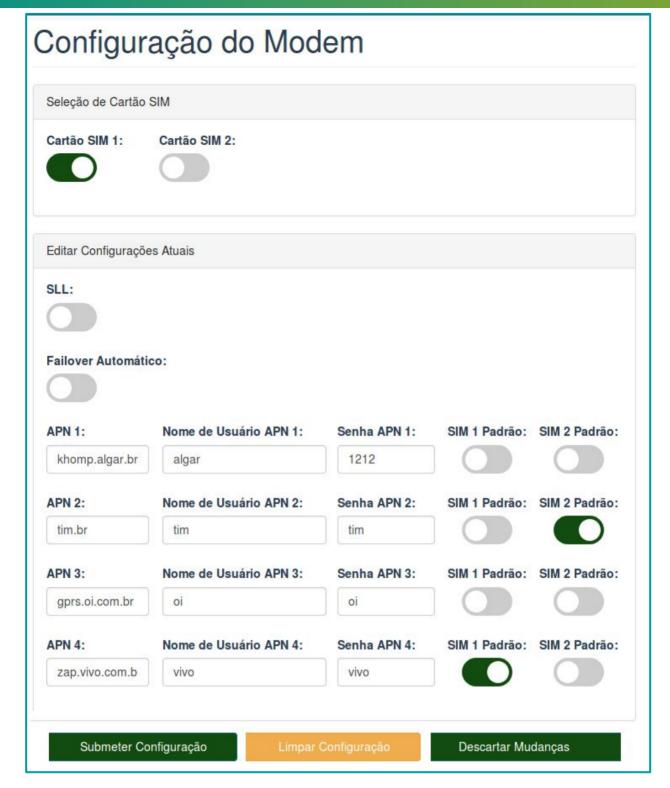
A operacionalidade do SIM card é um ponto de extrema importância para o correto funcionamento dos gateways da linha ITG, não só na questão da qualidade e estabilidade da rede, mas também referente ao plano de dados associado ao chip e a sua correta configuração no gateway.

A qualidade da rede é uma característica bem particular da operadora (fornecedor) e do local onde o gateway está instalado. Como exemplo, é comum nos depararmos com situações onde o ITG funciona de forma mais estável com a "operadora1" e menos estável com a "operadora2". Sabendo desta informação, fica a cargo do administrador do sistema verificar e validar o SIM card, antes mesmo da ativação do projeto.

Em relação ao plano de dados, não é uma tarefa fácil estimar inicialmente qual é o plano de dados que melhor atende o projeto. Nas primeiras semanas, para estabilizar o sistema, é comum o acesso remoto para o monitoramento / configuração da rede de endpoints e do próprio gateway ITG. Para ter noção de um provável tráfego gerado pelo gateway, consulte o tópico "Consumo de dados" deste datasheet.

Deve-se especificar corretamente a "APN", "usuário" e "senha" associado ao SIM card. O fornecedor do SIM card adquirido deve indicar o tipo de aplicação do SIM card, o tipo da rede ou o plano de dados, a região, entre outras informações do chip. A Khomp testou e homologou os SIM cards observados a seguir. Quando usados, devem ser configurados de acordo com a tabela:

Fornecedor	Modelo	APN	Usuário	Senha
Algar	M2M IoT	algar.br	algar	algar
Linksfield	M2M	lf.br	If	If
NLT	2G, 3G ou 4G	nlt.com.br	nlt	nlt
NLT *	SIM Card M2M/IoT Triplo Corte	nlt.com.br	nlt	nlt
Arqia	IoT GO	m2m.arqia.br	arqia	arqia
Arqia	Banda Larga	bl.arqia.br	arqia	arqia
Arqia	IoT Connect	iot4u.br	arqia	arqia
Arqia	Move	iot4u.br	arqia	arqia
Vivo	3G ou 4G	zap.vivo.com.br	vivo	vivo
Vivo	M2M	inlog.vivo.com.br	datatem	datatem
Claro	3G ou 4G	claro.com.br	claro	claro
Claro	M2M	inlog.claro.com.br	claro	claro
Tim	3G ou 4G	tim.br	tim	tim
Tim	M2M	datatem.tim.br	datatem	datatem


^{*} SIM cards homologados a partir da versão de firmware 1.1.0.1

Devido a grande diversidade de modelos de SIM cards disponíveis no mercado, é extremamente importante que o administrador do gateway ITG confirme junto ao fornecedor do chip, se as informações da tabela podem ser usadas pelo SIM card adquirido ou não, pois o fato de configurar uma APN errada pode fazer com que o gateway não fique operacional / acessível via rede de dados móveis ou que o acesso fique mais lento do que deveria, comprometendo o desempenho do ITG.

As APNs previamente configuradas nos gateways, são meros exemplos. Apague estas informações (caso não sejam úteis) e configure as informações dos SIM cards instalados nos gateways.

Após alterar qualquer informação associada ao modem, será necessário reiniciar o ITG, para que as novas configurações entrem em vigor.

Consumo de dados

Nesta seção, destacamos o cenário real, cujo tráfego via modem foi monitorado por várias semanas e permitiram estimar um volume de dados enviado para a Cloud do seu projeto.

	Tecnologia LoRa
Endpoint	NIT 21LI
Número de endpoints	5
Frequência de envio das mensagens para Cloud	5 minutos
Consumo diário	± 4.5 Mb
Consumo semanal	± 31.5 Mb
Consumo mensal	± 135 Mb

Especificações técnicas

Físico Ambiental

- Duas portas RJ45 fast Ethernet 10/100 Mbps
- Duas portas RJ11 1-Wire
- Display OLED com 4 botões
- · Botão reset
- LED de energia
- LED de estado do equipamento
- Dimensões (LxAxP): 202x42x101 mm
- Peso aproximado: 590 g (sem embalagem)
- Conector para adaptador de energia de 12 VDC do tipo Jack P4 de 2.1 mm:
 - Corrente máxima de 5 A
- Adaptador de energia:
- Entrada: 100-240 VAC, 50/60 Hz
- Saída: 10-13,5 VDC
- Potência: 5 W
- Temperatura de operação: 0-50 °C
- Umidade de operação: 10-90% não condensado
- Temperatura de armazenamento: 0-85°C
- Umidade de armazenamento: 10-90% não condensado

Módulo LoRa *

- Protocolo LoRaWAN 1.0.3
- Bandas de frequência: 915 MHz
- · Canais: 8
- · Potência:
 - Até +28 dBm (915 MHz)

Antenas

- Duas antenas omnidirecionais:
 - Rede móvel de dados 3G ou 4G
 - Rede ZigBee ou LoRa
- · Ganho: 5 dBi
- Impedância: 50 ohms
- Potência: 50 W
- Polarização: vertical
- Conectores: SMA Fêmea

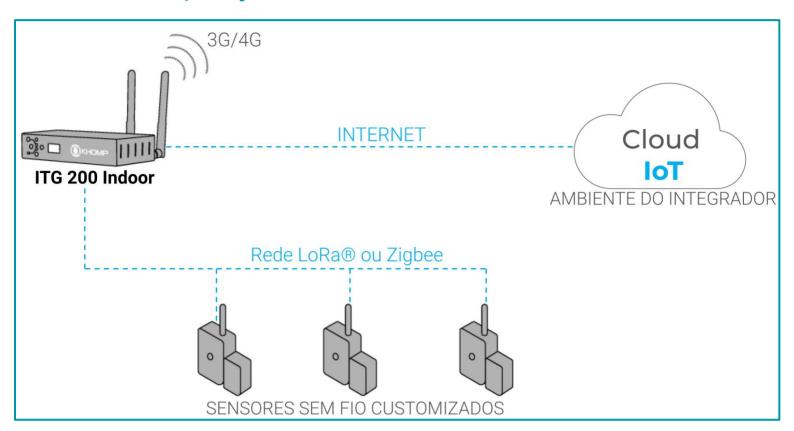
Itens opcionais *

- Módulo 4G de dados para até 2 SIM cards
- Módulo 3G de dados para até 2 SIM cards

Garantias e certificações

- Garantia total (legal + garantia Khomp): 1 ano
 - Garantia legal: 90 dias
 - Garantia Khomp: 9 meses
- Certificação Anatel
- Indústria certificada ISO 9001

Módulo 3G *


- Bandas de operação 3G: B5, B8, B2, B1, B4
- Bandas de frequência: 800/850, 900, AWS1700, 1900, 2100 MHz
- Suporta 2 SIM cards do padrão Mini SIM (2FF)
- Taxa de transferência (DL / UL):
- HSPA: 21/5,7 Mbps
- WCDMA: 384/384 Kbps
- EDGE: 296/236 Kbps
- GPRS: 107/85.6 Kbps

Módulo 4G *

- Suporta 2 SIM cards do padrão Nano SIM (4FF)
- Bandas de operação/frequência:
- LTE B1: -99.5 dBm (10 MHz)
- LTE B2: -99.9 dBm (10 MHz)
- LTE B3: -99.7 dBm (10 MHz)
- LTE B4: -99.7 dBm (10 MHz)
- LTE B5: -99.9 dBm (10 MHz)
- LTE B7: -99.2 dBm (10 MHz)
- LTE B8: -99.8 dBm (10 MHz)
- LTE B12: -99.8 dBm (10 MHz)
- LTE B13: -99.5 dBm (10 MHz)
- LTE B18: -100 dBm (10 MHz)
- LTE B19: -99.9 dBm (10 MHz)
- LTE B20: -99.8 dBm (10 MHz)
- LTE B25: -100 dBm (10 MHz)
- LTE B26: -99.5 dBm (10 MHz)
- LTE B28: -99.6 dBm (10 MHz)
- LTE B38: -99 dBm (10 MHz)
- LTE B39: -99.5 dBm (10 MHz)
- LTE B40: -99.2 dBm (10 MHz)
- LTE B41: -99 dBm (10 MHz)
- WCDMA B1: -109.2 dBm
- WCDMA B2: -110 dBm
- WCDMA B4: -109.5 dBm
- WCDMA B5: -110.4 dBm
- WCDMA B6: -110.5 dBm
- WCDMA B8: -109.5 dBm
- WCDMA B19: -110.1 dBm
- GSM850: -108 dBm
- EGSM900: -108 dBm
- DCS1800: -107.4 dBm
- PCS1900: -107.5 dBm
- Taxa de transferência (DL / UL)
 - LTE:
 - LTE-FDD: 150/50 Mbps
 - LTE-TDD: 130/30 Mbps
 - - DC-HSDPA: 42 Mbps (DL)
 - HSUPA: 5.76 Mbps (UL)
 - WCDMA: 384/384 kbps
 - GSM:
 - EDGE: 296/236.8 kbps
 - GPRS: 107/85.6 kbps

 $[^]igstar$ Itens opcionais acarretam em custos adicionais. Os módulos podem ser adquiridos separadamente.

Modelo de aplicação

